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1 Executive Summary 

2 Research Questions 

3 What are the advantages and disadvantages of Bayesian statistical techniques in 

4 clinical trial design and analysis, and what is the potential impact of these approaches 

5 on policy-level decisionmaking by the Centers for Medicare & Medicaid Services 

6 (CMS)? 

7 

8 Methods 

9 We provide a basic tutorial on Bayesian statistics and the possible uses of such 

10 statistics in clinical trial design and analysis.  We conducted a synthesis of existing 

11 published research focusing on how Bayesian techniques can modify inferences that 

12 affect policy-level decisionmaking. Noting that subgroup analysis is a particularly fruitful 

13 application of Bayesian methodology, and an area of particular interest to CMS, we 

14 focused our efforts there. We used simulation studies and a case study of patient-level 

15 data from eight trials to explore Bayesian techniques in the CMS decisional context in 

16 the clinical domain of the prevention of sudden cardiac death and the use of the 

17 implantable cardioverter defibrillator (ICD).  We combined knowledge gained through 

18 the literature review, simulation studies, and the case study to provide findings 

19 concerning the use of Bayesian approaches specific to the CMS context. 

20 
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Results 

Our literature review summarized articles categorized into four themes: (1) the 

advantages and disadvantages of Bayesian techniques in clinical trial design and 

analysis; (2) the use of Bayesian techniques in subgroup analyses; (3) the use of 

Bayesian techniques in meta-analysis; and (4) the effect of using Bayesian techniques 

on policymaking/decisionmaking.  Our simulation studies demonstrated that while single 

trials may be adequately powered to detect main treatment effects, they often have low 

power to detect differential treatment effects.  Furthermore, these studies demonstrated 

that combining data from trials improves the power to detect such differential treatment 

effects. Our ICD case study explored the findings from our simulation studies and 

sought to provide evidence concerning the advantages and disadvantages of Bayesian 

techniques in clinical trial design and analysis.  This case study led us to the following 

key findings: 

•	 The analysis of the individual ICD trials found that, out of eight trials, five showed 

evidence of treatment effect, but there was also a lot of variation in the estimates 

of ICD effect across trials.  Within any trial, the results were fairly robust to 

different model formulations.  Generally there was no evidence of significant 

differential treatment effects in the prognostic subgroups. 

•	 Combining data from trials improves our inferences by increasing the precision of 

our estimates, as well as the power to detect main effects and interactions. A 

variety of modeling approaches allow us to combine data from different trials, but 

they do not necessarily lead to the same inference.   
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3
 


• Understanding the underlying model assumptions and limitations is important 

when interpreting the results from the combined analysis.  For example, we 

observed that some models showed evidence for an interaction between 

treatment and age in the combined analysis.  But this evidence arises from 

models that assume that this interaction is the same across all trials.  If this 

assumption is regarded as unreasonable, and we consider instead a model that 

accounts for the variation of the interaction across trials, then the interaction 

between treatment and age is no longer significant. 

• When considering Bayesian estimation, the role of priors should also be 

examined through a sensitivity analysis.  

• Our analyses demonstrate that we can utilize Bayesian hierarchical models to 

predict survival from patients in subgroups.  We found, however, that survival 

predictions from the analysis based on randomized trials may not be comparable 

to the empirical survival observed in the registry.  The reason is that patients in 

the registry may have different prognoses from those seen in clinical trials. 

• We examined the use of patient-level data versus aggregate data as information 

accrues over time. Our analysis showed that the resulting inferences are not 

necessarily the same.  The analysis of aggregate data may be more sensitive to 

priors. 

• We note that an analysis which assesses the interactions between treatment and 

covariates defining the subgroups of interest may not be feasible with aggregate 

data. 
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Conclusions 

Based on our review of the literature, simulation studies, and our case study, we 

conclude the following concerning the use of Bayesian statistical approaches in CMS 

policy- and decisionmaking. 

1. 	 CMS should consider claims about differential subgroup effects only if 

they are accompanied by a formal statistical test for interaction. 

a. 	 Claims about differential subgroup effects based on stratified 

analysis should only be considered as exploratory.  These 

analyses are compromised by the small sample sizes and post hoc 

decisions regarding the number of tested subgroups.   

b. 	 Subgroup effects observed in a specific trial should be placed 

into context by using a statistical model that combines 

information across trials and across subgroups. The random

effects/hierarchical models do both.  

2. 	 To increase the statistical power to detect those interactions that in fact 

exist, consider using all sources of data in order to stipulate within the 

statistical model which types of interaction are likely.  For example, 

observational data and expert opinion might suggest that if an interaction is 

present it will take the form of decreasing ICD efficacy with increasing burden 

of disease 

3.	 Base study design and decisionmaking only on those subgroup effects 

that are likely to be strong.  The power to detect interactions is not 

universally high, and focusing attention on the most likely candidates will limit 
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the number of subgroups that are analyzed, and thus limit the pernicious 

effects of random variation. 

4.	 If the trial-based data are sufficient, do not directly combine trial-based 

data with information from other sources such as observational data 

and expert opinion. In this case the objective data are sufficient, and there 

is no need to utilize subjective information. Instead, use these other sources 

as informal sources of validation, and also to help design the statistical model 

for the trials (see below). 

5. 	 When little or no trial-based information about a subgroup is available, 

consider the use of other data (e.g., trial-based information from other 

subgroups, observational data, expert opinion) in order to specify a 

prior distribution. Unless special circumstances such as small patient 

pools are present, do not use this information to make final decisions 

about efficacy within the subgroups in question, but instead use this 

information to plan further studies.  This suggests that the more 

controversial applications of Bayesian methodology should be reserved for 

those situations in which the decisionmaker has no other choice, and should, 

in any case, not be considered definitive. 

6. 	 Claims based on Bayesian methods should provide sensitivity analysis 

to the assumed priors. While for large trials the results are not sensitive to 

prior choices, this is not the case for small size trials. It is therefore important 

to demonstrate through sensitivity analyses how the choice of the prior 

impacts (or does not impact) the findings. 
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Summary 
 

The use of Bayesian statistical approaches has gained broader acceptance within 

the clinical trial community. The impact of these methods on CMS decisional contexts 

and policy-level decisionmaking however was uncertain.  Our analyses explore the main 

proclaimed advantages of Bayesian statistics (namely, the use of prior information, 

sample size determination, borrowing strength from different trials, and sequential 

monitoring of trials) and provide examples of decisionmaking situations where the 

findings reached using these approaches both agree with and differ from findings 

reached using frequentist statistical techniques. 

Our findings confirm that, like classical techniques, Bayesian approaches are 

affected by the problems of model specification (i.e., the relationship between various 

factors – patient, provider, intervention, and other contextual features – and the 

outcome of interest). In addition, Bayesian approaches can be substantially affected by 

the “Bayesian prior” – the representation of beliefs about the quantity of interest (e.g., 

relative risk of events when a new device is used vs. a conventional device).  Thus, 

when considering using or interpreting Bayesian analyses, the focus of attention and 

thoughtful ex ante agreement are the specification of the model and specification of the 

Bayesian prior. The case study of the use of ICD therapy in the prevention of sudden 

cardiac death demonstrates the application of these techniques and highlights some of 

the practical challenges. 

The use of Bayesian statistical approaches, and incorporation of our findings 

concerning their strengths and limitations into the CMS decision-making process will 

enable policymakers to harness the power of the available sources of clinical evidence, 
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1 explore subgroup effects within a trial and across trials in a methodologically rigorous 

2 manner, assess the uncertainty in clinical trial findings, and – ideally – improve health 

3 outcomes for Medicare beneficiaries. 
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1 Chapter 1. Introduction, Tutorial, and Overview of 

2 Project 

3 Introduction 

4 The phrase “Bayesian statistics”a refers to an approach and method of analysis 

5 which combine prior knowledge and accumulated experience with current information in 

6 order to make inferences about a quantity of interest.  Using Bayes’ theorem, Bayesian 

7 approaches are able to provide a formal method of learning from evidence as it 

8 accumulates. In the past, Bayesian approaches to clinical trial design and analysis 

9 have been difficult, given their computational intensity and their sometimes controversial 

10 method of using prior information. As a result of recent breakthroughs in computational 

11 algorithms, the computational limitations of Bayesian approaches have mostly been 

12 mitigated. The potential benefits of Bayesian approaches – especially when good prior 

13 information is available – have allowed the use of these techniques to become more 

14 popular within the clinical trial community. 

15 As evidence of the rise of Bayesian statistical approaches in the clinical trial and 

16 regulatory communities, in 2006 the U.S. Food and Drug Administration (FDA) Center 

17 for Devices and Radiological Health (CDRH) issued draft guidance for industry and FDA 

18 staff entitled “Guidance for the Use of Bayesian Statistics in Medical Device Clinical 

19 Trials.”1  Although this guidance from the FDA provides a useful overview of Bayesian 

20 statistics and the recommended methods for employing such approaches in clinical trial 

21 design and analysis, it focuses on the use of Bayesian techniques at the FDA approval 

a A glossary of terms is provided at the end of this report.  Terms defined in the glossary appear in bold and 
italicized where they first appear in the main text of the report.  
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stage rather than at the stage where the Centers for Medicare & Medicaid Services 

(CMS) determines whether evidence is sufficient to support their needed coverage 

decisions. In addition, it has been suggested that the FDA CDRH guidance in its 

current form puts substantial emphasis on calibrating Bayesian findings to classical 

(frequentist) calculations and therefore does not take full advantage of the Bayesian 

approach.777 

As Bayesian statistical techniques have gained broader acceptance within 

the clinical trial community, CMS seeks to assess the potential impact of such 

techniques on their policy-level decisionmaking.  The Coverage and Analysis 

Group at the CMS requested this report from The Technology Assessment 

Program (TAP) at the Agency for Healthcare Research and Quality (AHRQ).  

AHRQ assigned this report to the following Evidence-based Practice Center (EPC):  

Duke EPC (Contract Number:  HHSA 290 2007 10066 I).   

The overall goal of this project is to provide CMS with a general approach for 

assessing the use of Bayesian techniques in its evidence-based policy processes.  To 

reach this goal we had three specific aims: 

1) To provide a synthesis of existing research regarding the advantages and 

disadvantages of Bayesian techniques in clinical trial design and analysis, 

focusing on how such techniques can modify inferences that affect policy-level 

decisionmaking 

2) To explore Bayesian techniques in the CMS context through the specific clinical 

domain of the prevention of sudden cardiac death (SCD) trials to determine the 

effective use of the implantable cardioverter defibrillator (ICD). 

9
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3) To use the findings from the above two investigations to determine lessons 

learned specific to the CMS context, and to provide CMS with findings on: (a) the 

inclusion of studies that apply Bayesian techniques; (b) the circumstances in 

which such techniques may or may not be particularly appropriate; and (c) how 

such techniques can be used in conjunction with other data sources available to 

CMS, such as registries. 

To help orient the reader we first provide an overview of the structure of the report, 

and then provide a basic tutorial on Bayesian statistical approaches and their use in 

clinical trial design and analysis. 

Overview of the Report 

There are numerous areas within clinical trial design and analysis where the use of 

Bayesian analyses can be and has been explored. These include applications to 

planning a clinical trial, performing and analyzing the trial, planning subsequent trials, 

combining data from multiple trials (and other sources), and incorporating registry data 

into the evidence base.  These different potential applications of Bayesian approaches 

and the relative advantages and disadvantages of Bayesian approaches compared with 

more classical techniques are summarized in the literature review in Chapter 3.   

Our main focus in this report, however, is on one of the potential applications of 

Bayesian analysis – subgroup analysis – within individual trials and across multiple 

trials. We chose this focus because it is a  natural application of Bayesian methods 

from the CMS perspective, since (a) CMS is often presented with subgroup analyses 

that might suggest that a drug or device might work better or worse for particular 

10
 
 



 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

categories of patient; (b) CMS is usually more interested in  patients aged 65 years and 

above; and (c) results for particular subgroups are often based on small sample sizes, 

and/or are otherwise inconsistent, and thus require the introduction of additional 

information in order to draw sound conclusions.  In Chapter 2 we define four decisional 

contexts or situations where CMS may consider the use of Bayesian approaches, and 

throughout our analysis we continually refer back to how our findings may apply to 

these contexts. 

After defining these contexts, we provide a review of the literature, describing current 

knowledge of subgroup analyses from both the Bayesian and frequentist perspectives. 

We sought to determine whether there are circumstances under which Bayesian or 

frequentist statistical techniques provide design or analysis advantages for Phase III 

efficacy trials.  In particular, we summarize the published literature exploring how 

Bayesian techniques of clinical trial design and analysis could modify inferences and 

potentially affect CMS policy-level decision-making. 

We then illustrate the application of these findings to a clinical domain of interest to 

CMS – specifically, clinical trials evaluating the use of implantable cardioverter 

defibrillator (ICD) therapy in the prevention of sudden cardiac death (SCD).  We used 

both simulation studies and a case study evaluating patient-level data from eight ICD 

clinical trials to highlight the advantages and disadvantages of Bayesian techniques as 

compared to frequentist approaches. These simulations are intended to illustrate and 

supplement the literature review. 

We use the data from the ICD trials to illustrate how the analyses of these data 

might proceed using the Bayesian and frequentist perspectives.  The primary goal of 
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this case study is to help the reader visualize how a Bayesian analysis would proceed 

and be reported. In order to illustrate the two types of data that an analyst might 

encounter in practice, the case study includes both analyses of raw data and of 

summary data.  We also explore the use of Bayesian statistical techniques in a clinical 

domain where registry data are available – such as those clinical domains where CMS 

issues a national coverage decision requiring, as a condition of coverage, the collection 

of additional patient data to supplement standard claims data (i.e., Coverage with 

Evidence Development).  Although the simulation studies and case study focus on 

clinical trials of ICD use in primary and secondary prevention of SCD, we highlight 

throughout this report how our findings are generalizable to other clinical domains. 

The report ends with a series of conclusions based on our review of the literature, 

the simulation studies, and the case study. 

Bayesian Tutorial 

Background and Scope 

The two main schools of statistical thought are Bayesian and frequentist.  Although 

some statisticians strongly prefer one approach over the other, most are willing to 

consider both, and, indeed, with the increased feasibility of Bayesian computation, 

practice appears to be moving toward a blending of these perspectives.  This tutorial 

takes no position on the ongoing debate about the foundations of statistics.  Instead, its 

purpose is to provide non-technical background for non-statisticians.   

For this purpose, it is critical to recognize that the current environment is based 

almost entirely on frequentist ideas. Some of this emphasis is historical based on when 
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Bayesian techniques were more difficult to implement than is presently the case.  The 

other reason for the emphasis on frequentist ideas is that this approach can be 

implemented in a highly rule-based fashion.  This allows agreement on the ground rules 

for what will be deemed statistically significant before data analysis begins, and 

confidence that such ground rules will be consistent from application to application.  

While Bayesian analyses can be pre-specified and rule-based, they are generally 

flexible - advocates of the Bayesian approach cite this as an advantage.  

This section does not focus on circumstances where the Bayesian approach yields 

similar results but frames the analysis differently, or on those situations where the 

Bayesian approach might provide marginal improvements over a frequentist approach.  

Recognizing the inherent limitations of non-technical tutorials, this section tries to 

provide answers to the following two questions: 

(1) 	 For the purposes of policy makers, what are Bayesian statistics? 

(2) 	 For the purposes of policy makers, what are the situations where the 
 

Bayesian approach is likely to be so much better than the frequentist 
 

approach that it should be strongly considered? 
 

For a more comprehensive tutorial, we recommend the references cited in Chapter 

3. 

Diagnostic Testing Example 

Figure 1 illustrates the basic Bayesian paradigm, namely that “prior information and 

beliefs” plus “new data” yield “revised beliefs.”  This paradigm can be illustrated by 

diagnostic testing. 
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Suppose  that the physician suspects that a patient might have meningitis, and is 

considering whether to subject that patient to the risk and expense of a diagnostic test 

that can shed additional light on the matter.  After taking a history and performing a 

physical examination, the physician believes that the patient has a 20 percent 

probability of meningitis. This “20 percent” is the “prior information.” 

Prior information can be entirely quantitative, entirely qualitative, or a combination of 

the two. An example of entirely quantitative information is the use of a risk score – for 

example, if the patient has a fever in excess of 103 degrees Fahrenheit a risk score 

would increase. An example of entirely qualitative information is the physician’s intuition 

based on years of experience but impossible to quantify using precise rules.  Combining 

the two begins with the quantitative risk score, clinical intuition modifies the score. . 

As a general principle, applications of Bayesian inference are relatively 

uncontroversial when the prior information is quantitative and reproducible. Applications 

of Bayesian inference where prior beliefs are subjective and not reproducible are more 

controversial. These applications become increasingly controversial when the relative 

role of the prior beliefs increases, and the relative role of the data decreases and the 

more that prior probability is guided by intuition or is otherwise idiosyncratic. 

Suppose that the physician decides to perform the diagnostic test, and that the test 

has 90 percent sensitivity and 80 percent specificity.  Recall that sensitivity is the 

probability that a patient with meningitis will have a positive test corresponding to 

“meningitis,” and that specificity is the probability that a patient without meningitis will 

have a negative test corresponding to “not meningitis” (see Figure 2).  We posit a 

population of 1000 patients, of whom 200 have meningitis because the prior probability 
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of disease is 20 percent. Of these, 180 will have a positive test because the sensitivity 

is 90 percent. The remaining entries of the table are filled in similarly.  The positive 

predictive value is the probability that a patient with a positive test will actually have 

meningitis – 180/(180+160) = 53 percent.  Similarly, the negative predictive value is the 

probability that a patient with a negative test will not have meningitis – 640/(640+20) = 

97 percent. 

Translating Figure 2 into Bayesian terminology, the prior probability of meningitis is 

20 percent. The new data are the results of the test.  If the results of the test are 

positive, the posterior probability of meningitis is 53 percent. The data have caused 

the physician to revise her prior beliefs about the probability that the patient has 

meningitis upward, from 20 percent to 53 percent.  A negative test would cause her to 

revise her prior beliefs about the probability that the patient has meningitis downward, 

from 20 percent to 3 percent. 

Figure 3 illustrates the role of the physician’s prior probability in Bayesian inference.  

In this Figure, we explore the scenario when the physician’s probability of meningitis is 

only 10 percent.  This prior probability might have dropped from 20 percent (Figure 2) to 

10 percent (Figure 3) because a different patient is being assessed.  If the prior 

probability of disease is based on subjective criteria, different physicians might have 

different prior estimates of the probability of meningitis, even for the same patient.  The 

sensitivity and specificity are properties of the diagnostic test and remain the same, as 

in Figure 2. The only difference is that the prior probability of meningitis is smaller.  A 

positive test now yields a posterior probability of meningitis of 33 percent, and a 
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negative test yields a posterior probability of 1 percent.  This illustrates the general 

principle that where you end in a Bayesian analysis often depends on where you start. 

This example also illustrates one of the reasons that an analyst might select a 

Bayesian approach – namely, that the problem under consideration is a particularly 

good match for the Bayesian way of thinking.  

Meta-analysis Example 

The diagnostic testing example is particularly simple, in part because considerations 

of precision have been ignored. In reality, although the physician’s best estimate of the 

prior probability of meningitis is 20 percent (i.e., 20 percent is a “point estimate”), in 

practice this estimate of 20 percent would not be absolutely precise.  Perhaps the 

physician is comfortable with any probability within the range of 15 to 25 percent.  The 

sensitivity of the test might not be exactly 90 percent – perhaps it was based on a study 

whose results are consistent with everything in the range of 88 to 92 percent.  A similar 

phenomenon holds for specificity. For a positive test the posterior probability of 

meningitis will not be a point estimate of 53 percent, but instead will fall in a range 

around 53 percent. 

To illustrate the role played by precision, consider the frequentist graphical 

presentation of a meta-analysis, as in Figure 4.  We now assume that two placebo-

controlled randomized trials have been performed, both of which have as their primary 

outcome the improvement in the intervention group in comparison with placebo in a 

continuous measure such as systolic blood pressure (SBP). Here, an improvement of 0 

implies no impact of the intervention, whereas positive numbers suggest that the 
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intervention is preferable to the placebo because it is associated with a greater 

reduction in SBP. As drawn, both studies favor the intervention by different amounts. 

In Figure 4, study 1 is smaller than study 2, and has a wider confidence interval 

around the estimated effect of the intervention.  The summary measure, derived from 

the meta-analysis, has two characteristics.  First, it has a tighter confidence interval than 

either study, illustrating the gain in precision associated with combining information 

across the two studies. Second, the point estimate for the meta-analysis-derived 

summary measure is closer to that of study 2 than that of study 1, which reflects that 

study 2 is providing better data.   

Figure 4 also illustrates the process of Bayesian analysis in the presence of 

imprecision. In the Bayesian paradigm, “study 1” represents the prior distribution of 

the impact of the intervention on SBP in a way that takes into account the precision 

associated with the analyst’s prior beliefs. “Study 2” represents the new data in a way 

that takes into account the precision associated with these data.  “Summary” represents 

the posterior distribution  of the impact of the intervention on SBP, taking into account 

prior beliefs, the data, and the imprecision associated with each. 

The next set of figures illustrates the role played by the prior distribution in the 

conclusions of a Bayesian analysis.  In Figure 5, the prior distribution is diffuse since  

the confidence interval is wide. This situation is essentially equivalent to a meta

analysis with a small first study.  This will have little or no impact on the results, 

illustrated by the similarity between the posterior distribution and the data.  Diffuse prior 

distributions that have little impact on the results are termed  non-informative prior 

distributions.” Bayesian analyses that use non-informative prior distributions are 
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relatively uncontroversial because  the impact of prior beliefs is trivial in comparison with 

the impact of the data and the conclusions of a Bayesian analysis using a non-

informative prior distribution may be the same as to the conclusions derived by classical 

methods. 

Figure 6 illustrates another type of prior distribution.  The confidence intervals 

associated with this distribution are narrower than in Figure 5 – the prior distribution has 

an impact on the results (the posterior distribution) and is “informative.” The prior 

distribution is conservative in that it assumes the intervention has no impact on SBP. – 

Distributions with similarly conservative assumptions are termed “skeptical” since  the 

analyst is skeptical that the intervention has an impact.  The result of using the skeptical 

prior distribution is that the posterior distribution is less extreme than the data, and that 

the point estimate of the impact of the intervention from the new data is “shrunk” toward 

the null value of 0. Bayesian analyses that use skeptical prior distributions are relatively 

uncontroversial, if for no other reason than that the above idea of “shrinkage” is also 

well accepted within frequentist approaches to statistical inference. 

Figure 7 illustrates a prior distribution that is informative but not skeptical.  The prior 

belief is that the intervention is highly effective. Because the analyst posited an effect 

that was stronger than the effect observed in the new data, the prior distribution pulls 

the posterior distribution away from the null value of 0.  In other words, the analyst 

concludes that the impact of the intervention is stronger than implied by the new data 

when these new data are considered in isolation.  Applications with non-skeptical prior 

distributions are controversial because of this phenomenon.  Such applications are 

more controversial when the prior distribution is based on the subjective beliefs of the 
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analyst, and are less controversial when the prior distribution is based on real data such 

as from another clinical trial.   

An example of deriving the prior distribution quantitatively is to use the results of a 

previous meta-analysis. In this situation  the posterior distribution from the previous 

meta-analysis becomes the prior distribution  when new studies become available.  The 

new studies update the meta-analysis. A “sequential meta-analysis” is iterative, with 

each new study published in the literature inducing another round of updating.   

Figure 8 illustrates the worst case for Bayesian analysis.  There, the prior distribution 

is non-skeptical and illustrates strong beliefs in the efficacy of the intervention.  The 

data provide little information contributing little to the posterior distribution, which does 

little more than recapitulate the prior beliefs of the analyst.  There is almost universal 

agreement that applications like those illustrated in Figure 8 are inappropriate, except 

perhaps to document the lack of objective data about the phenomenon under study.   

The differences between Figures 5 and 8 can help illustrate the circumstances in 

which Bayesian methods might most naturally be considered.  In Figure 5, there are 

enough data to provide sound inference.  It does not matter whether the analysis is 

Bayesian or not, although some analysts will select a Bayesian approach because of 

their philosophical beliefs, the easier interpretation of the results, or because the type of 

problem is a good fit for a Bayesian formulation. 

In Figure 8, there are too little data to provide sound inference, and a Bayesian 

approach risks being too subjective by being primarily based on subjective belief rather 

than objective data. The most natural applications of Bayesian methodology fall 

somewhere in between.  Some data are available, but not enough to draw strong 
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conclusions in the absence of other information.  An informative prior distribution can 

be supported, either because it is skeptical  or because it is based on objective 

information. . 

Technical Note on the Role of Distributions 

The usual presentations of meta-analysis (e.g., Figure 4) or its conceptually 

equivalent Bayesian counterparts (e.g., Figures 5 to 8) gloss over some assumptions 

about the shape of the prior distribution and of the new data.  Figure 9 presents the 

same information, but in a way that highlights the distributional assumptions that 

underlie the analysis. In particular, a typical meta-analysis such as is depicted in Figure 

4 assumes that the distribution of the outcome within each study, perhaps after an 

appropriate transformation such as log-transformation,  is Gaussian. If so, the analyst 

can rely on the mathematical result that the combination of Gaussian distributions is 

Gaussian, and be confident that the posterior distribution is Gaussian as well.  The 

exact nature of this latter distribution (its center point and its spread) can be obtained 

directly from a formula.  

When distributions can be combined in this simple fashion they are termed 

conjugate. Various other pairs of conjugate distributions exist. When the distributions in 

question are not conjugate, often the posterior distribution must be derived using 

simulations, which may be technically complex to implement.  Such simulations are 

where the reader will encounter terms such as “Gibbs sampler,” “Markov chain Monte 

Carlo (MCMC),” and similar examples of statistical esoterica.  This report does not focus 

on the details of deriving posterior distributions.  
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Making Decisions Using Bayesian Analysis 

Decisionmaking in any particular Bayesian analysis takes place by examining 

properties of the posterior distribution. As an example of using the posterior distribution 

to make inferences, if more than 95 percent of the area of the posterior distribution for 

the impact of an intervention on SBP falls in positive territory, the analyst is “95 percent 

confident” that the intervention is effective.  Bayesian analysts refer to this as the 95 

percent credible interval. The credible interval has a specified or subjective probability 

of containing the parameter of interest, given the observed data.  The best guess or 

point estimate for the magnitude of effectiveness might  be the mean, median, or mode 

of this posterior distribution. The precision of the conclusions is derived from the spread  

of the posterior distribution or the length of the credible intervals.  

In practice, analyses such as the above are then supplemented by an exploration of 

robustness – for example, in order to determine whether similar conclusions are 

obtained when the prior distribution is modified.  The less skeptical and more 

informative the prior distribution, the more extensive should be the assessment of 

robustness. 

Two Illustrative Applications of Bayesian Methodology 

The ideal application of Bayesian methodology occurs when there are  some data, 

but not quite enough to draw sufficiently firm conclusions.  Our report will focus on one 

such application – namely, subgroup analysis.   
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CMS might be interested in the performance of a medical device among patients 

aged 65 to 74 years. Most clinical trials of this device, however, are in patients aged 55 

to 64 years. Some information is available on patients aged 65 to 74 years, but is 

insufficient to form firm conclusions.  In other words, some data are available on 

patients aged 65 to 74, but not enough. The question becomes whether a Bayesian 

analysis might be performed, with the information from other age groups of patients 

providing the prior distribution that can then be combined with the data regarding 

patients aged 65 to 74. 

Another natural application of Bayesian statistics is in the design and analysis of  

Phase 1 and Phase 2 clinical trials, especially those trials for which it is critical to make 

the most statistically efficient use of all possible information.  One reason for doing so 

might be the testing of a promising therapy, albeit one with potentially devastating 

adverse events, in a condition that is uniformly fatal. , it is usually assumed that both the 

efficacy of the intervention and the likelihood of adverse events increase with the dose, 

so the goal is to estimate the maximum tolerable dose  (the maximum dose with an 

acceptable level of adverse events).  The analyst wishes to do so in a way that exposes 

as few patients as possible to unsafe doses of the drug, while exposing as many 

patients as possible to the drug’s therapeutic doses. 

These goals cannot be accomplished by treating each possible dosage level in 

isolation, if for no other reason than the information for each dose will be based on small 

sample sizes and thus will be unreliable.  Instead, the analyst posits a dose-response 

function between the probability of an adverse event and the dose.  By transforming the 

outcome variable using a “logit” transformation, a straight line is obtained that can be 
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described with a slope and an intercept (see Figure 10, which is drawn to have a slope 

of 1 and an intercept of 0). The prior distribution for the slope and intercept are derived 

from similar drugs, previously tested patients, and biologically informed supposition if 

necessary. The outcome for each patient can then be used, in Bayesian fashion, to 

update the estimates of this slope and intercept, and data collection continues until this 

line and the maximum dose corresponding to the acceptable probability of adverse 

events implied by this line has been estimated with adequate precision.  At each step in 

the process (e.g., for each new patient) the information to date can be used to assign 

the most statistically appropriate dosage level, which is the core idea behind  Bayesian 

adaptive designs. 

The take-home message of this second example is that early-phase testing is 

another circumstance that satisfies the condition of “some but not quite enough data” 

that suggests the use of Bayesian methods. This example also illustrates the general 

principle that Bayesian methods are not limited to data analysis, but can be used in 

study design as well. 

Differences between Bayesian and Frequentist Methods 

Most elements of frequentist inference have Bayesian counterparts.  The above 

example illustrated the Bayesian counterpart to the  95 percent confidence interval  

used by frequentist statisticians, the 95 percent credible interval  used by Bayesians. 
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There are subtle differences between what these two types of interval represent; but in 

practice they are similarly applied. 

It is not an exaggeration to claim that the only people who believe strongly that there 

are important differences between analogous Bayesian and frequentist concepts are 

those who are already strongly convinced  that one is theoretically superior to the other. 

For example, a frequentist might object that estimating the prior distribution involves 

judgment, despite the fact that doing so is crucial to the Bayesian approach.  Similarly, a 

Bayesian might object to the fact that frequentist methods do not explicitly describe prior 

beliefs, despite the fact that they are implicitly taken into account by frequentist 

methods. We recommend these assertions not be taken seriously, since most 

practicing statisticians do not strongly favor one methodology over the other. As 

Bayesian methods are becoming increasingly feasible from a computational 

perspective, various elements of the two approaches appear to be blending over time. 

One way to think about the differences between the Bayesian and frequentist 

approaches is to recognize that all applications of statistics are limited by the act of 

inference –what we would like to do is to observe an entire population, often including 

its future members, but we are limited by having data on only a subset of that population 

. This inescapable constraint implies that any statistical analysis will have some 

objective components (the mathematical maneuvers applied to the observed data) and 

some subjective components (extrapolating the results of the observed data to the 

population under consideration).  

Where the Bayesian and frequentist approaches to statistics differ is not in the 

amount of subjective judgment required but instead in where and how subjective 
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judgment enters the analysis.  In a Bayesian analysis, the subjective features enter 

formally and explicitly, primarily through the specification of the prior distribution and the 

choice of the model to be used in the analysis; or  they enter the analysis in how 

characteristics of the posterior distribution will be summarized in order to arrive at 

conclusions.  In a frequentist analysis, the subjective features also enter in the choice of 

the model to be used in the analysis. They enter informally, in the design of the clinical 

study and through the implicit weighting given to various individual results in drawing 

overall conclusions. Factors in this weighting include whether individual results were  

statistically significant at some p value  or not, the magnitude of observed trends, the 

overall consistency of observed trends in light of biological plausibility and the previous 

literature, and so forth. 

If this informal weighting procedure is performed thoughtfully, the flexibility of the 

frequentist approach represents a potential strength,  if not, the flexibility represents a 

potential source for erroneous conclusions, bias, and other sources of mischief.  

Similarly, the formal and explicit specification of how conclusions will be drawn from the 

data and what is known to date are a potential strength of the Bayesian approach, but 

only in those circumstances where the problem at hand and the knowledge to date 

make it sensible to do so. Fortunately, the results of Bayesian and frequentist analyses 

are often substantially similar, especially if both are performed with care and insight.   

Summary 

The primary goal of this tutorial is to provide non-statistical readers having no 

previous exposure to Bayesian methods with an intuitive introduction to those methods 

– specifically, “what Bayesian statistics are about and when I should care.”  What 
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Bayesian statistics are about is the process by which “prior beliefs are combined with 

new data in order to generate revised beliefs.”  The primary strength of Bayesian 

statistics is its explicit nature – by specifying ahead of time and in detail what is currently 

known, and how decisions will be derived from the combination of this knowledge and 

the new data, analyses, and decisions that derive from those analyses  will exhibit the 

laudable characteristic of transparency.  Its primary weakness is that not all applications 

of statistics fit naturally into this paradigm. 

When data have already been collected, there is only one set of circumstances 

where one should always strongly consider, independent of any philosophical 

preferences, the use of Bayesian approaches – namely, when: (a) a decision must be 

made; (b) some data are available, but the existing data provide insufficient guidance 

or precision for making that decision; and (c) additional information can be defensibly 

brought to bear on that decision. In this context, “defensible” could potentially mean: (a) 

based on related data such as a similar (but not identical) intervention applied to a 

similar but not identical population; (b) specified using conservative assumptions (e.g., 

such as an intervention having no impact on outcome); or (c) based on supposition, 

where the nature of that supposition is explicitly justified and accepted as reasonable by 

impartial observers. 

When the study is in the design phase, the flexibility inherent in the Bayesian 

approach provides the basis for adaptive randomization, which  allows the size of the 

study to be determined as data collection proceeds, and thus in some cases might help 

satisfy the ethical imperatives of exposing as few subjects as possible to risks and as 

many subjects as possible to treatments that are maximally beneficial.  
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1 Chapter 2. Framing the Problem: CMS Contexts (or 

2 “Situations”) 

3 We defined four decisional contexts or situations where CMS may consider the use 

4 of Bayesian approaches, and throughout our analysis we continually refer back to how 

5 our findings may apply to these contexts.  The four contexts are: 

6 • Situation 1: Applicants present CMS with results that suggest no or minimal 

7 efficacy of an intervention for the overall population, but apparent effectiveness in 

8 a subgroup or subgroups of patients, and are requesting reimbursement for 

9 those subgroups only. 

10 • Situation 2: Applicants present CMS with results that suggest that an 

11 intervention is effective overall, but concern is raised that the benefits might be 

12 less effective in some subgroups. 

13 • Situation 3: Applicants present CMS with results that suggest that an 

14 intervention is effective, but the trial in question has been performed on a 

15 different population (e.g. patients aged 55 to 64).  The applicants wish to extend 

16 the results to patients of interest to CMS. 

17 • Situation 4: Previous completed trials have demonstrated effectiveness in high

18 risk populations, and applicants are designing a new trial in a lower-risk 

19 population of interest to CMS and request feedback concerning their proposed 
 

20 trial design and analysis. 
 

21 For the purposes of this work, we assume that CMS’s evaluation task in each of the 
 

22 above situations involves three key steps: 
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1) Translating CMS’ general criterion of whether a given intervention is deemed 

“reasonable and necessary” into specific criteria describing the outcomes that are 

necessary and sufficient to characterize the intervention’s value to the target 

population. 

2) Assessing the degree to which the intervention in question promotes 

improvements in those outcomes to the target populations. 

3) Judging whether those improvements are sufficient to implement into policy. 

These evaluation tasks can be performed using two approaches: frequentist 

statistical techniques or Bayesian techniques.  Step 1 of establishing the specific 

criteria by which an intervention is assessed is basic to both evaluation approaches.  

Step 2 involves analysis of evidence, typically using frequentist statistical tools for 

assigning levels of statistical significance, and Step 3 involves a mix of quantitative and 

qualitative approaches. Quantitative approaches might include simple criteria such as 

“are there X trials each with a p value < y?,” or more involved approaches based on 

meta-analysis. Qualitative approaches aim to promote decisionmaking by assessing 

the “sense of the committee” and can be informal or formal such as the  modified Delphi 

method. 

What is distinctive about the two approaches is the way they address the latter two 

steps. In a frequentist evaluation approach, these steps are treated as separate.  The 

Bayesian approach treats the latter two steps as integrated and may be characterized 

as assessing the adequacy of evidence for the purpose of decisionmaking or action. In 

particular, a Bayesian analysis of any body of evidence focuses on estimating the 
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“strength of belief” regarding any particular measure, for example. “Study X leads me to 

be Y percent confident that the effect of the intervention is greater than Z”.  

Furthermore, the Bayesian approach leads to natural interpretations of multiple studies, 

each contributing to a body of evidence, and also provides a conceptually consistent 

framework for linking various forms of evidence to construct aggregate inferences.  . 

Whatever the theoretical or philosophical benefits of any particular evaluation 

approach, what is ultimately of interest to CMS and society is how to achieve the 

practical goals of promoting improved health outcomes for Medicare beneficiaries.  It is 

important to note that the evaluation task is not pursued in a vacuum, as multiple 

stakeholders are involved with a wide variety of interests.  Evaluation and ultimate 

decisionmaking occurs through a process which has social, political, and economic 

ramifications. It is crucial that any evaluation strategy is in harmony with the current 

decision-making context and process. In addition to achieving the analytical goal of 

extracting a correct inference from a body of evidence, an evaluation strategy should 

promote the broader goals of transparency, clarity, efficiency, and accommodation of 

multiple objectives.   
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1 Chapter 3. Literature Review 

2 Methods 

3 This report focuses on those situations where Bayesian these techniques might be 

4 used in CMS policymaking context.  Therefore, the literature review aimed to 

5 determine whether there are circumstances under which Bayesian or frequentist 

6 statistical techniques provide design or analysis advantages for Phase III efficacy 

7 trials. Throughout the review we focused on how such approaches could modify 

8 inferences that affected policy-level decisionmaking.  Although our simulation studies 

9 and case study of the ICD clinical domain also explore this question, we sought first to 

10 determine whether a review of the available published literature would provide empirical 

11 evidence. 

12 We searched MEDLINE® using terms related to Bayesian theory and analysis, 

13 frequentist analysis, and health policy.  We restricted the search to trials and review 

14 articles published in English.  We also searched the reference lists of key papers and 

15 proceedings from a recent SAMSI workshop on subgroup analysis2 for potentially 

16 relevant publications. Titles and abstracts of all studies identified by these means were 

17 reviewed independently by two investigators. 

18 The following types of articles were excluded: 

19 • Epidemiological studies (observational or longitudinal studies). 

20 • Genetic studies. 

21 • Randomized controlled trials (RCT) that did not include Bayesian analysis. 

22 Meta-analyses and cost-effectiveness analyses were included if they focused on the 

23 methods of interest and applied them in a way that allowed a comparison of Bayesian 
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and frequentist methods. At the title-and-abstract stage, articles were included for full-

text review if at least one of the two reviewers indicated that they should be included.   

At the full-text review stage, articles were again reviewed by two independent 

reviewers and were included if they fell into one or more of the topics of interest listed 

above. Disagreements between reviewers were resolved through discussion. 

Through all search strategies combined, we identified 334 potentially relevant 

citations. One hundred and ninety-seven (197) were excluded at the title-and-abstract 

screening stage, and another 67 were excluded at the full-text screening stage leaving a 

total of 70 included studies to be reviewed.   

Findings 

Articles in the literature review were categorized into four themes: (1) advantages 

and disadvantages of Bayesian techniques in clinical trial design and analysis; (2) use 

of Bayesian techniques in subgroup analyses; (3) use of Bayesian techniques in meta

analysis; and (4) the effect of using Bayesian techniques on 

policymaking/decisionmaking.  

Table 1 reports the number of included articles reviewed for each of the four themes.  

Note that some articles were included for more than one theme.   

In what follows, we summarize our review of the literature in these four themes – 

while focusing these summaries on areas of interest to CMS. 
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Advantages and Disadvantages of Bayesian Techniques in Clinical 

Trial Design and Analysis 

Potential Advantages of Bayesian Approaches 

The statistical literature contains numerous books and papers describing Bayesian 

theory, its associated methods as applied to medicine, and the advantages and 

disadvantages of Bayesian techniques in clinical trial design and analysis.  The 

following discussion of the published literature therefore is not intended to be all-

inclusive, or to provide a complete introduction to Bayesian statistical approaches.  

Readers are referred to Spiegelhalter and colleagues3 for a comprehensive summary 

on the use of Bayesian statistical approaches in the design and analysis of clinical trials, 

to a Health Technology Assessment by the National Institute for Health Research 

(NHS)4 for a complete and formal review of Bayesian methods in health technology 

assessment, and to the 2006 FDA guidance on the use of Bayesian methods in medical 

device trials.1  Many of the advantages and disadvantages of Bayesian approaches 

discussed here are based on review of these three sources.  Note that, in addition, the 

International Society for Bayesian Analysis (ISBA) provides a list of Bayesian 

5resources.

The CMS decisionmaking context focuses mostly on situations in which clinical trials 

have already been performed, and in which CMS is considering whether the current 

evidence base is sufficient.  Two areas where such decisionmaking may be helped by 

Bayesian approaches include the analysis of subgroups and the meta-analysis of 

clinical evidence as it accumulates. These topics are discussed below. Here we 

concentrate on three additional potential advantages of Bayesian approaches: (a) the 
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use of prior information; (b) sample size determination; and (c) adaptive designs. It is 

important to note that as with  frequentist statistical approaches, clinical trials based on 

a Bayesian approach still require scientifically sound clinical trial planning and analysis. 

Bayesian statistics focus on the ability to learn from evidence as it accumulates.  

Prior information is combined with current information on a quantity of interest, and 

Bayes’ theorem is used to formally combine these two sources of information to 

produce an updated or posterior distribution of the quantity of interest.  The use of prior 

information is both seen as the main strength of Bayesian techniques, while also 

providing the most cause for concern on the part of frequentist clinical trialists.  

Bayesian methods may be controversial when the prior information is based mainly on 

personal opinion or expert judgment, or when it is based on evidence which the 

decisionmaker considers subjective. The use of prior information based on empirical 

evidence from existing clinical trials is less controversial, and in the CMS context this 

will be the most common source of prior information.  Additional information could, 

however, be based on patient registries, pilot studies, or clinical trials of similar 

interventions. For a prior to be considered appropriate, the evidential basis of the prior 

(and any potential biases of that evidence) must be explicitly given.  In addition, many 

emphasize the necessity of sensitivity analyses which explore a range of options for the 

chosen prior.4 

Fisher provides a discussion of Bayesian and frequentist analysis and interpretation 

of clinical trials and potential controversies over the use of prior information, as well as 

the potential pitfalls both in their elicitation and incorporation into the existing evidence 

base.6  Examples of studies from the literature that explore the use of prior information 

34
 




 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

 

 

and its impact on clinical trials include those by Gennari et al.,7 Tyson et al.,8 Brophy 

and Joseph,9 and Kpozehouen et al.10 

Although the benefit of incorporating an informative prior into trial design and 

analysis is the most notable advantage of Bayesian statistical approaches, even when 

such an informative prior is not available, the Bayesian approach may still be useful 

through the use of interim analyses or midcourse modifications as discussed below.   

The use of Bayesian approaches may modify the sample size an applicant needs to 

determine that the evidence is sufficient to CMS.  This change could be based on either 

the use of prior information, as described above, or on interim “looks” during the course 

of a clinical trial. As discussed by Schmid and colleagues,11 the use of prior information 

has two potential effects on sample size estimation.  If the available prior evidence 

provides information about the effect size, then it may reduce the required sample size.  

If, however, the prior evidence reflects additional uncertainty about that effect size, then 

the sample size may be increased. When either Bayesian or frequentist statistical 

techniques are used for estimating sample size , the goal is to gather enough 

information to make a decision about the efficacy of an intervention, while not wasting 

resources or putting patients at unnecessary risk.  Bayesian approaches allow their 

users not to specify a particular sample size, but rather a particular criterion at which to 

stop the trial. At any point during the trial period, Bayesian techniques can be used to 

obtain the posterior distribution for the sample size, to compute the expected additional 

number of observations needed to meet the pre-specified stopping criterion, and to 

potentially stop the trial at the precise point where enough information has been 

gathered to answer the clinical or policy question of interest.  An example of the use of 
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Bayesian approaches in sample size determination is provided by Wang and 

colleagues.12 

Finally, the use of Bayesian approaches may allow adaptive designs to be 

incorporated into clinical trials.  Such trial designs may allow an unfavorable treatment 

arm to be dropped midcourse during the trial, or permit modifications to the 

randomization scheme to occur. Although the frequentist approach includes sequential 

analysis techniques that do not require pre-specified sample sizes, it is generally agreed 

that the Bayesian approach is particularly well suited to the topic of interim review. 

The decision to stop a randomized clinical trial based on an interim analysis is best 

made by weighing the value (both costs and benefits) of the additional information that 

would be gained if further subjects were enrolled in the trial.  Lewis and colleagues13 

provide a discussion of how such a comparison is difficult using frequentist statistical 

approaches and give an example application of Bayesian approaches.  Bayesian 

approaches to monitoring clinical trials (and potentially stopping a trial early for futility or 

efficacy) depend on the underlying theory that a trial’s outcome can be considered 

positive or negative if it is demonstrated that the posterior probability of a clinically 

important improvement is greater than a pre-specified threshold.  This criterion, 

however, is dependent both on interim and future data.  Because the future data are not 

available at the time of the interim analysis, they are replaced by the values predicted 

based on the interim data and the prior distribution of the treatment effect.  Dmitrienko 

and Wang14 and Freedman and Spiegelhalter15, 16 reviewed Bayesian strategies for 

monitoring clinical trial data and compare the Bayesian approach to more frequentist 

approaches. Dmitrienko and Wang14 focus on the sensitivity of stopping rules to the 
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choice of prior distribution and provide guidelines for choosing a prior distribution of the 

treatment effect. In their analysis, they emphasize that the choice of prior distributions 

depends on the trial’s objective, development phase and patient population.  Their 

findings demonstrate that weak priors are more likely to trigger an early stopping in 

futility monitoring compared to strong priors.  This sensitivity to negative treatment 

differences may be justified in large mortality trials because it helps reduce the 

exposure of critically ill patients to ineffective drugs.  However, using such weak priors 

in most proof-of-concept studies may result in unacceptably high early termination rates.  

In these situations, stronger aggressive (i.e. informative) priors are preferable.14 

Emerson and colleagues17 also expand on the importance of including different prior 

distributions when considering Bayesian stopping rules.  Dignam and colleagues18 

provide a discussion of a controversial trial stoppage based on interim results and 

demonstrate how the use of a Bayesian approach allows exploration of a range of prior 

beliefs regarding the efficacy of treatment and the appropriateness of the early 

termination of the trial.  George and colleagues19 and Berry and colleagues20 provide 

additional examples of the use of Bayesian statistical approaches in stopping a clinical 

trial early, and describe how this approach differs from  frequentist techniques. 

In addition to early stopping of trials, Bayesian approaches are used for adaptive 

randomization within clinical trials.  Such adaptive randomizations may allow providers 

to enroll patients into a clinical trial, but with treatment assigned based on the 

performance to date, thereby allowing randomization to be based on accumulating data 

during a trial. Alternatively, the probability of assigning the next patient to a particular 

treatment group can be changed because of baseline prognostic factors.  Thall and 
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Wathen21 discuss some of the limitations of adaptive randomization and methods of 

addressing these potential problems.  Avins22 provides an interesting discussion of the 

ethics of subject allocation within randomized controlled trials and how Bayesian 

approaches may be useful. 

Potential Disadvantages of Bayesian Approaches 

Although much of our review of the literature focuses on the potential advantages of 

Bayesian statistical approaches in clinical trial design and analysis – there are as 

expected also potential difficulties that accompany their use.1 These difficulties include: 

•
 	 The identification and pre-specification of prior information. 

•
 	 The development and pre-specification of the underlying mathematical model. 

•
 	 The need for statistical and computational expertise. 

•
 The difficulties involved in conveying the results of a Bayesian trial given any 

unfamiliarity with the methods among policymakers or stakeholders.  

•	 Facilitating interpretation and consensus-building when analysis of trial results by 

frequentist and Bayesian approaches differ. 

Many of these difficulties as they specifically apply to healthcare decisions and 

policymaking are discussed by Sheingold23 and Winkler.24  Both discussions also focus 

on ways of making Bayesian approaches transparent and useful to policymakers and 

provide a useful resource for CMS and policymakers. 

In the next two sections we discuss two areas where the use of Bayesian 

approaches may have substantial benefits compared with frequentist approaches 

specifically in the CMS decisionmaking context: (1) the analysis of specific subgroups, 
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either within a given trial or between trials as the evidence accumulates; and (2) the 

meta-analysis of a group of clinical trials exploring an intervention of interest. 

Use of Bayesian Techniques in Subgroup Analyses 

CMS Context 

We assume that CMS will potentially encounter all four situations described above 

and require interpretation of subgroup analysis.  For simplicity of presentation, and in 

order to isolate those issues that are unique to subgroups, we assume that a single trial 

is at issue; in particular, that either data from a single trial are being analyzed or that 

CMS and industry representatives are consulting about the design of an upcoming trial.  

Meta-analysis is considered below. 

Medical Context 

Frequentist randomized trials are designed to identify average effects of 

interventions, the philosophy being to estimate the efficacy of the intervention for 

“typical” patients. However, patients are biologically heterogeneous, and it is consistent 

with medical science to believe that not only will individual patients differ in their 

response to an intervention, but that groups of patients will do so as well.  This level of 

biological heterogeneity is becoming increasingly apparent through, among other things, 

the genomics revolution. Accordingly, the desire to explore whether and how the 

efficacy of an intervention differs across subgroups is a medically and scientifically 

reasonable thing to do. The problem is not with this intention, but rather trials that are 

usually not designed to facilitate definitive subgroup analyses, and even in the best 
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case, subgroup analyses induce various issues of statistical methodology that makes 

their interpretation difficult.  

Statistical Context 

With rather modest exceptions, Bayesian and frequentist statisticians agree on the 

nature of the methodological problems associated with subgroup analysis.  Their 

disagreement lies in how best to address these problems.  The basics of the Bayesian 

and frequentist approaches have been described elsewhere, and this section assumes 

that the reader is familiar with both.  

Frequentist position 

The frequentist perspective is well summarized by Rothwell,25 who cites many of the 

other frequentist articles described below – especially those of Pocock et al.26 and 

Brookes et al.27 – and is particularly recommended as a sound listing of action items 

implied by the frequentist philosophy.  This summary will primarily rely on Rothwell.25 

Current perspectives such as those described by The European Agency for the 

Evaluation of Medicinal Products Committee for Proprietary Medicinal Products28 or by 

Moher and colleagues29, are based on the frequentist perspective. Rothwell25 states 

that the situations in which subgroup analyses should be considered include those in 

which there is potential heterogeneity of treatment effect related to risk or to 

pathophysiology, where there are clinically important questions related to the practical 

application of treatment, or where underuse of the treatment in routine clinical practice 
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is due to uncertainty about the benefit. However, he provides recommendations for trial 

design, analysis, and interpretation of such subgroup analyses. 

The problems that the frequentists are trying to address in their recommendations 

include the following. First (defining statistical significance as p < 0.05), comparison of 

statistical significance across subgroups can lead to flawed conclusions. 

Suppose that in subgroup A, the confidence interval for the treatment effect is 0.2 to 3.8, 

p = 0.04, whereas in subgroup B the confidence interval for the treatment effect is -0.5 

to 2.5, p = 0.08. The confidence intervals overlap, and in all probability a formal test for 

interaction would be non-significant, but the intervention effect in subgroup A is 

statistically significant, whereas the intervention effect in subgroup B is not.  However, 

there is little or no real difference across subgroups. 

Second, the more subgroup analyses there are, the greater the likelihood of 

spurious results. Often, the emphasis is on falsely positive findings, in which case this 

phenomenon is termed the multiple-inference, multiplicity, or multiple-testing problem. It 

is also possible for the spurious results to be falsely negative. An example is when the 

intervention effect is actually the same in all groups but by chance appears to be of a 

smaller magnitude in some subgroups than others. 

Third, when subgroup analyses are made in isolation they can potentially 

suffer from having small sample sizes, which in turn can lead to instability in 

conclusions and often to low statistical power as well. If the randomization is not 

stratified by the subgroup in question, it is possible that the subgroups in question will 

be unbalanced (e.g., one intervention having more patients with a good prognosis than 

the other), which must be accounted for in order to draw appropriate conclusions. 
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The frequentist response to these issues is two-fold, pertaining to design and 

analysis.  Regarding design, post hoc analyses of subgroups are de-emphasized and in 

extreme cases forbidden. Put in more positive terms, the frequentist approach 

emphasizes the specification, on clinical grounds, of potentially important subgroups, 

and places greater weight on those (presumably clinically well grounded) subgroup 

analyses that are pre-specified.  This approach does not necessarily solve the problem 

of multiple subgroup analyses, since large numbers of such analyses could potentially 

be specified, but in practice often serves to limit the number of subgroup analyses to a 

manageable level. 

The main analytic response to the above difficulties is to adopt the strategy of only 

considering subgroup analyses if an initial test for intervention-by-subgroup interaction 

is statistically significant.  The intention of this strategy is to reduce the number of 

spurious findings of unusual effects in individual subgroups.  For the same reason, it is 

sometimes the case that the set of potential interactions includes only those interactions 

that are specified a priori, but other analysts will test for unexpected interactions and 

use a more stringent threshold for such tests. If the test for interaction is positive, 

analyses of subgroups might make adjustments for multiplicity.  A simple such 

adjustment is the Bonferroni correction. For example, if two subgroup analyses are 

being considered, then α= 0.025 (i.e., 0.05/2, the number of statistical tests) is used as 

a revised threshold for statistical significance, and confidence intervals are similarly 

inflated by a Bonferroni correction factor. 
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Bayesian critique 

The Bayesian critique of the frequentist position is both technical and philosophical.  

The technical portion of the critique is that the test for interaction that forms the 

underpinning of the frequentist approach does not necessarily have good properties.  In 

the first place, this test for interaction often has low power, which frequentists believe to 

be an advantage because of its conservatism but which Bayesians believe to be a 

disadvantage because of its tendency to miss real differences in efficacy across 

subgroups. 

A second problem lies not with the test for interaction per se, but instead lies with the 

analysis strategy within which that test for interaction is imbedded.30  In particular, the 

problem lies in making a “go/no go” decision based on whether the p-value for this test 

for interaction falls below 0.05.   

One component of the philosophical portion of the Bayesian critique pertains to the 

way that frequentists frame the multiplicity problem.  Bayesian statisticians believe that 

it is intellectually inconsistent for one analyst that has performed 99 previous subgroup 

analyses and then discovered an interesting result in subgroup analysis number 100 to 

come to a different conclusion than another analyst that begins with the latter subgroup 

analysis, the rationale being that the data are the same for both analysts as is the true 

state of nature. Bayesian statisticians believe that they have solved the multiplicity 

problem through reframing it, as discussed below. 

A second component of this philosophical critique pertains to the assumption of no 

differential efficacy among subgroups that is represented by the null hypothesis in the 

frequentist test for interaction.  To a Bayesian, such an assumption is inconsistent with 
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the notion of biological heterogeneity (i.e., discussed under the medical context).  

Rather than having to make an artificial distinction, based on a single statistical test, 

whether such heterogeneity is present or absent, the Bayesian prefers to (a) follow the 

biological insight that heterogeneity is almost always present; (b) include parameters 

representing this heterogeneity in their models; and (c) include the quantitative 

exploration of this heterogeneity as part of their analysis strategy.  

A final component of this philosophical critique pertains to the problem of small 

sample sizes.  In the most extreme version of the frequentist position, the only 

information that can be considered about a subgroup pertains to the subgroup itself, 

which can lead to small sample sizes within that subgroup.  Bayesians, on the other 

hand, use information (i.e., “borrow strength”) from similar subgroups to enhance the 

amount of evidence available for any particular subgroup.   

Bayesian position 

The Bayesian position is perhaps most clearly elucidated by Simon31 and illustrated 

by Goodman and Sladky.32  Its basics are also covered in various tutorial articles, not 

discussed here. 

Some statistical price must be paid in order to address the problems of multiplicity 

and the instability of estimates within small subgroups.  The price that Bayesians are 

willing to pay is through (a) specifying a model delineating the nature of the anticipated 

interactions; and then (b) specifying, through a prior distribution, estimates associated 

with the parameters of this model (i.e., specifying the anticipated interaction terms).  

Once the data are collected, the estimates within any subgroup are not based on that 
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subgroup alone (as is the case in the frequentist approach), but instead are a weighted 

average of the subgroup in question and all other subgroups.  Technically, and as 

described in detail elsewhere, the methodology can be summarized by the expression 

prior distribution plus data equals posterior distribution.  Thus, at the conclusion of a 

Bayesian analysis, the estimated efficacy within any subgroup will be a distribution 

whose central (or modal) value reflects the most plausible point estimate and whose 

spread provides information about the range of reasonable values.   

The effect of this procedure is to “shrink” the estimates of “extreme” subgroups – 

that is, subgroups that have extreme estimates of efficacy, and also subgroups that 

have extremely small sample sizes – toward the main effect of efficacy in the population 

as a whole.  Very skeptical prior distributions give greater weight to the notion that 

interactions are unlikely, and thus require dramatic differences between subgroups in 

order to conclude that substantial differences exist. 

Those that advocate for a comprehensive Bayesian approach argue that neither of 

the above elements of the statistical price is particularly problematic.  Regarding the first 

point, Bayesians argue that the principle of biological heterogeneity suggests that it is 

scientifically sound to assume that subgroup effects exist, and thus that modeling these 

effects is a positive rather than a negative, and also contributes toward greater 

transparency in decisionmaking. Regarding the second point, Bayesians regard the 

specification of a prior distribution as being consistent with the way that decisionmakers 

frame many actual decision problems (i.e., as preliminary beliefs altered by data into 

revised beliefs), and regard the specification of those prior beliefs as providing important 

elements of transparency. Sensitivity analyses can be performed in order to assess how 
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the conclusions are altered by postulating different prior distributions.  Finally, skeptical 

prior distributions can be specified, thus providing a high hurdle before declaring 

subgroup effects to be different – in essence, the same idea of a high hurdle that 

underpins the frequentist test for interaction, but implemented in a fashion that 

Bayesians believe to be preferable. 

Comments 

Fortunately, the entire debate of whether the Bayesian worldview is uniformly 

preferable to that of the frequentist can be avoided by taking the position of Simon;31 

namely, that Bayesian methods work very well in some situations and not so well in 

others, and that the subgroup analysis problem is one that is unusually well matched to 

the Bayesian approach.  Both Bayesians and frequentists acknowledge the same set of 

problems associated with subgroup analyses – namely, the potential inconsistency in 

conclusions obtained from analyzing multiple subgroups.  These problems are 

exacerbated when subgroups are small and the analyses are made in the absence of 

an explicit theoretical model.  This potential inconsistency is illustrated in our CMS 

Situation 1 (requesting determination that the evidence demonstrating efficacy is 

sufficient for select subgroups) and Situation 2 (potential of limited efficacy in select 

subgroups) – that is, the data suggest that efficacy associated with one or more 

subgroups might differ from the others leaving CMS with the problem of whether to 

believe that the effectiveness of the intervention actually differs.   

The clinical trial literature and many policymaking groups acknowledge the problems 

associated with subgroup analyses and implicitly or explicitly adopt the frequentist 
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position in response. One element of this response with which Bayesians would agree 

is the importance of transparently specifying the analyst’s conceptual model ahead of 

time. Here, the main difference between Bayesians and frequentists is precisely how 

that model is specified. Another point of agreement is that the test for interaction 

proposed by frequentists is conservative (i.e. avoids falsely declaring statistical 

significant), in the sense that it is more likely to miss true subgroup effects than it is to 

falsely declare that subgroup effects exist.   

The primary point of dispute is how to respond to this conservatism.  Frequentists 

interpret this conservatism as an advantage. Bayesians prefer a strategy that has a 

better chance of discovering subgroup effects when they in fact exist.  The Bayesian 

approach even provides a way forward in CMS Situation #3 (extending current results to 

subgroups not well represented in the trials) for which there is no equivalent frequentist 

method – namely, to (a) verify that the biological science is not markedly different for 

Medicare beneficiaries or  to make a conceptually based estimate of the degree of 

difference; and (b) use this assumption, plus data from other subgroups, to posit a 

distribution of possible efficacy values in the currently unstudied subgroup.  The paper 

by Goodman and Sladky32 provides a particularly thoughtful example of how prior 

distributions can be specified. 

As illustrated by Simon31 and Goodman and Sladky,32 policymakers that are 

considering Bayesian methods should insist on prior distributions that are (a) 

scientifically justified, such as by a conceptual model or a meta-analysis; and (b) 

skeptical.  One implication of a skeptical prior distribution is that results from extreme 

subgroups – in particular, from subgroups based on extremely small sample sizes – will 
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shrink toward the population mean. In particular, in Situation 1 and Situation 2, when 

the subgroup in question is small neither frequentist nor Bayesian methods are likely to 

conclude that the results in the anomalous subgroup are real.   

Another advantage of a skeptical prior distribution is that it would serve to 

standardize the application of Bayesian methods in practice.  Advocates of the 

Bayesian position often seem to underestimate the importance of this standardization 

within a regulatory context, where analysts are not always disinterested observers but 

instead may be adopting a position of advocacy. Indeed, this standardization is  in many 

cases a significant advantage of frequentist methods which, although not necessarily 

optimal in all cases, provide a set of ground rules that can be agreed upon ahead of 

time and, thus, are in that sense  ‘objective’. 

The best solution to all of the above issues is replication and validation.  In designing 

subsequent studies, Bayesian methods offer the potential for smaller and more focused 

studies.32 This issue is discussed in detail elsewhere. In addition, note that when 

making coverage decisions CMS is in general interested in more inclusive trials that 

have a large enough sample size to detect a health benefit, not just for the group with 

the highest likelihood of showing efficacy. 

Use of Bayesian Techniques for Meta-Analysis of Existing Trials 

As the number of clinical trials assessing a given intervention increases, often with 

differing findings, policymakers are tasked with how best to evaluate the collection of 

existing trials, and whether the use of Bayesian techniques is helpful in such analysis.  

The literature considers two separate cases of  meta-analyses -- (a) all the evidence 
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consists of similar trials with similar design, similar patient populations, similar 

interventions, and similar outcome measures; and (b) other evidence is available such 

as that from dissimilar trials, which may differ in terms of interventions or patient groups, 

from non-trial sources such as from observational studies or registries, or from expert 

judgment. 

Case 1: Similar Trials 

Three models are typically used: (a) a fixed-effect model; (b) a random-effects 

model with all parameters estimated from the trials in question; and (c) a random-

effects model using outside information.  Frequentists utilize either models A or B 

above. Bayesians utilize either models B or C above.  Model B is termed the ’empirical 

Bayesian‘ solution, whereas model C is termed the ’fully Bayesian‘ solution.   

Symbolically, denote the efficacy measure in study “k” by λk. The fixed-effect model 

assumes that these λk are the same for all studies, and can thus be denoted by λ. Each 

study will generate an observed λk and a within-study standard error σk. Typically, σk will 

decrease with sample size; as sample size increases, the standard error of the 

estimated intervention effect λk tends to decrease. The fixed-effect model uses as its 

estimate of λ a weighted average of the λk, with weighting factor 1/Vk, where Vk denotes 

variance . Thus, more precise studies will receive greater weight in the estimation of λ. 

The fixed-effect model violates the principle of biological heterogeneity (discussed in 

the subgroup analysis section); that is, it is more plausible to postulate that there is 

some degree of heterogeneity in the effects being measured than to believe that they 

are absolutely identical.  Nevertheless, in practice this assumption is not intended to be 
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literally true but only approximately so and, thus, some analysts (e.g., Senn33) 

recommend beginning with a fixed-effect analysis as a standard of comparison. 

The random-effects model relaxes the assumption that the efficacy being measured 

is identical from study to study.  Each individual study still generates an efficacy 

estimate λk and precision σk (or, equivalently, Vk). In order to implement the notion that 

efficacy can differ across trials, it is assumed that each λk is drawn from a ‘super

population distribution‘ having mean λ0 and standard deviation τ. The estimate of λ0 is 

still a weighted average of the λk, with the weighting factor now being vk + τ2, where (to 

recapitulate) τ2 is the between-study variance.   

The main implications of this procedure are: (a) less precise studies are given more 

weight when compared with the fixed-effect model; (b) in effect, estimates from extreme 

studies are shrunk toward the overall mean; and (c) estimates of λ0 from the random-

effects model are less precise than estimates of λ from the fixed-effect model.  Just as 

the absolute consistency of the effects is a useful fiction within the fixed-effect model, 

the existence of a super-population distribution is a useful fiction in the random-effects 

model. This fiction is made more actionable by the notion of  ‘exchangeability’, which in 

essence states that the analyst has no reason  to anticipate that the efficacy estimate 

from any particular study will be either higher or lower than average.   

In practice, the rate-limiting factor in the estimation of τ is the number of studies, not 

the sample size within study. Accordingly, estimates of τ from meta-analyses of small to 

moderate numbers of studies can be clinically implausible, and deleteriously affect the 

statistical properties of the analysis. However, this empirical Bayes approach does 
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have the advantage (or disadvantage, depending on one’s perspective) of being entirely 

data-based. 

In the fully Bayesian solution, σk and τ are considered to be random variables, and 

require external prior estimates.  The results are often sensitive to these assumptions 

about the prior distribution. Accordingly, the advantages of the fully Bayesian solution 

are more prominent in Case 2 described below.   

Case 2: Dissimilar Information 

The fully Bayesian solution is the only approach that accommodates disparate types of 

information. Examples of such information are randomized trial data from similar 

interventions or similar patient subgroups, non-randomized trial data in circumstances 

where few randomized trials are available,‘ and expert judgment.  The impact of this 

external information can be adjusted through the precision of the prior distributions 

which summarize that information. For example, in a case with voluminous 

epidemiological data and modest randomized trial data the analyst can choose to 

assign equal weight to these two types of information by, in essence, using the 

epidemiological data to derive a prior distribution that is derived from the assumption 

that the epidemiological studies have the same sample size as the trials.  All of the 

previously described advantages and disadvantages of using external and expert-

derived data apply. 
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Comment 

Direct comparisons of meta-analyses between frequentist and Bayesian approaches 

(e.g., Bloom et al.34) do not always yield consistent results – in particular, sometimes the 

results of the two approaches are similar and sometimes they are different.  However, 

some observations do appear to be reasonably consistent. 

•	 Estimates of efficacy from random-effect models have less precision than 
 

estimates of efficacy from fixed-effect models. 
 

•	 Fixed-effect models give greater weight to larger studies than do random-effects 

models. 

•	 Both approaches struggle a bit when the number of studies is small to moderate.  

In the fixed-effect model, this is reflected by a test for heterogeneity that has low 

power. In the random-effects models, this is reflected by the tendency for the 

results to be sensitive to the estimate (model B) or assumptions (model C) about 

τ. 

•	 The results of the fully Bayesian analysis are most likely to differ from others 

when relatively little information is available from the data.  This is, in general, the 

most dangerous circumstance for drawing definitive conclusions – which 

phenomenon should be illustrated by a careful sensitivity analysis. 

•	 The most promising circumstance to apply a fully Bayesian approach occurs 

when the type of information available to the analyst is sufficiently disparate as to 

call into question the other two models. 
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Effect of Using Bayesian Techniques on Policy-making and Decision-

making 

The literature regarding the policy implications of the application of frequentist or 

Bayesian methods generally falls into two major categories: (a) the technical issues that 

influence applicability of each approach for health economic evaluations, in particular 

cost-effectiveness and net-benefit , and (b) the sources and possible solutions to 

policymaker resistance to the use of Bayesian methods.   

Applicability of Frequentist vs. Bayesian Approaches for Health Economic 

Evaluations 

The majority of articles in the current literature fall into this category.  In addition to 

the critique of the relative theoretical merits of one approach compared to the other, the 

key messages are: (a) health economic calculations such as incremental cost-

effectiveness ratios, cost-effectiveness acceptability curves, and net-benefit calculations 

can be performed within a Bayesian framework, and (b) as with other metrics emerging 

from research studies, if a non informative prior is used the results of frequentist and 

Bayesian analyses are comparable. 

Several papers illustrate the application of Bayesian methods to cost-related 

analyses. Hahn and Whitehead35 applied data from a comparative study of 

laparoscopic vs. open surgery for repair of inguinal hernia, specifically calculating and 

plotting net benefit as a function of willingness to pay for units of health effectiveness.  

With the exception of the interpretation, using a non-informative prior led to comparable 

results with both approaches. They advocate for the Bayesian approach because of its 

53
 




 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

 

 

natural interpretation in a decisionmaking context but warn that misspecification of a 

prior distribution can lead to less than robust conclusions.  Similarly, Heitjan and Li36 

apply data from a cardiovascular trial to calculate incremental net health benefit using 

Bayesian methods, advocating for the value in producing more interpretable, flexible 

results. However, like Hahn and Whitehead,35 they do not offer direct evidence of the 

attractiveness of the outputs to decisionmakers.   

Ades et al.37 provide a conceptual case for the use of Bayesian evidence synthesis 

in the context of a cost-effectiveness decision models; decision models are noted to be 

increasingly well accepted policy analysis tools in health care. While written to provide 

guidance on the use of the techniques, they point out that “(f)urther research is needed 

on how to model particular evidence structures, how to use historical evidence and 

expert opinion to inform priors, and how to understand the…information around complex 

networks of evidence.” 

Nixon and Thompson38  focus on the potential utility of Bayesian methods for 

addressing the importance of subgroup differences; it is suggested that these methods 

hold promise in the context of cost-effectiveness studies, noting many of the issues 

raised by Bayesian vs. frequentist approaches to subgroups identified in the relative 

efficacy literature (see the section on “Use of Bayesian Techniques in Subgroup 

Analyses,” above). 

In the same vein, Vanness and Kim39 apply Bayesian methods to data from a study 

of ganciclovir prophylaxis in liver transplantation.  In addition to demonstrating the 

application of the methodology, they also suggest that Bayesian methods should be 

more attractive to decisionmakers as the outputs have natural interpretations (and can 
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be directly incorporated into analyses which explicitly incorporate realistic 

representations of the losses associated with decisionmaking errors).  The study does 

not provide any empirical support for that suggestion. 

Three additional studies40-42 further illustrate the application of Bayesian methods to 

the calculation of cost-relevant metrics.  However, they do not provide further evidence 

regarding how the Bayesian approach leads to more useful analyses to decisionmakers 

than do frequentist methods. 

Sources and Possible Solutions to Policymaker Resistance to the Use of 

Bayesian Methods 

Two thought articles23, 24 focused on the question of why policymakers (and others) 

have been resistant to the application of Bayesian methods and how such resistance 

might be overcome. After laying out the case for preferring a Bayesian framework for 

evaluation of healthcare interventions, Winkler24 notes several possible explanations for 

why such an advantageous approach is not used more widely.  He considers and 

dismisses as crucial the philosophical issues (i.e., the notion of subjective vs. objective 

probability), as not particularly relevant to decisionmakers and, indeed, notes that 

decisionmakers are most apt to function in a Bayesian mode while appearing to 

embrace the frequentist analytic approach. Note that the relevance of information 

provided by Bayesian approaches to decisionmakers and ease of interpretation of these 

findings are highlighted by Harrell and Shih in their related analysis.43  In his research, 

Winkler lists five core problems with acceptance of the Bayesian approach: (a) there is 

inadequate training in Bayesian statistics; (b) software to implement Bayesian 
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techniques are less accessible; (c) application of Bayesian techniques requires thinking 

while frequentist approaches can be implemented relatively thoughtlessly; (d) there are 

few role models for successful application of Bayesian techniques; (e) there is a strong 

frequentist tradition that will be difficult to overcome – it is accepted as the standard by 

journals, policy makers, regulators, and courts.  On the latter point, he considers the 

possibility that one core issue is the belief by recipients of analyses that frequentist 

approaches are inherently more “objective” and thus less subject to manipulation.  In 

response to this list, he suggests the following: 

1. More materials for Bayesian training. 

2. Easier to use software. 

3. Better procedures for choosing prior distributions. 

4. Standards for presentation of results. 

5. Creating illustrative cases of the application of Bayesian techniques to 


decisionmaking problems in health care. 


6. Demonstrate the advantages of Bayesian techniques in important healthcare 

decisions, including consideration of utilities/loss functions. 

7. “Sell” the case for Bayesian methods more effectively (i.e., have people demand 

a Bayesian analysis). 

Sheingold23 takes a similar approach, but from the perspective of a decisionmaker 

looking to appreciate the value of Bayesian methods.  He observes that most 

decisionmakers are implicitly Bayesian; they are just not drawn to the formal methods 

(“new and different results are carefully scrutinized, although usually not with formal 

Bayesian methods, when they seem to contradict our prior knowledge.”) In addition to 
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the explanations described by Winkler, he highlights the key importance of added value, 

noting that approaches that require movement from a relatively stable and comfortable 

position requires demonstration of a significant anomaly – “an outcome that could not 

be predicted by the current paradigm.” In terms of the Medicare decisionmaking 

process, he points out 3 areas of resistance: (a) the methods are difficult to explain to 

stakeholders; (b) the decisionmaking process cannot be fully encompassed by any 

analytic process and indeed such a process may contradict goals of key stakeholders; 

and (c) there is no clear demonstrated anomaly related to frequentist methods.  His 

prescription for overcoming these barriers is similar to that of Winkler, with stress on 

what Bayesian methods add to the existing decisionmaking processes. 

Recognizing that a potential weakness of the application of Bayesian methods in the 

policy domain is the worrisome role of the prior distribution, Stevens and O’Hagan44 

focus on the notion of developing a “genuine prior.” The genuine prior is an informative 

prior that “would represent all available evidence that has been formally synthesized 

into probability distributions…” In the context of decisionmaking, they acknowledge that 

there is no well accepted process for elicitation of prior information and so any genuine 

prior should be judged relative to a non-informative prior for purposes of assessing the 

extent to which the informative prior influenced the analysis (and presumably to judge 

how intensely a decisionmaker must scrutinize how the “genuine prior” was 

constructed). In conclusion, they recommend that “[g]uidelines should be developed 

that provide recommendations for the elicitation process and the synthesis of such 

information into probability distributions. Submissions of evidence on the cost-

effectiveness of new interventions using the Bayesian approach must include 

57
 




 

 

1 supporting documentation that demonstrates clearly that a formal process of elicitation 

2 has been followed if the prior information is to be accepted as credible.” 

3 
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1 Chapter 4. Clinical Domain: The Implantable 

2 Cardioverter Defibrillator for the Prevention of Sudden 

3 Cardiac Death 

4 Introduction 

5 To explore the use of Bayesian techniques in the CMS context we evaluate the use 

6 of the implantable cardioverter defibrillator (ICD) in the prevention of sudden cardiac 

7 death. This domain is of particular interest as it represents: 

8 • A clinical domain and intervention which CMS has evaluated and for which it has 

9 provided coverage decisions several times over the past two decades. 

10 • An intervention which has been demonstrated to be effective in specific trial 

11 populations, but for which there is uncertainty in particular subgroups,  

12 • A costly intervention to the Medicare community. 

13 • A domain where there have been numerous clinical trials evaluating the ICD in 

14 diverse populations. 

15 • An intervention for which CMS has issued a “Coverage with Evidence 

16 Development” requirement, thereby establishing with professional societies an 

17 ICD registry to monitor the use of the ICD outside the confines of the clinical 

18 trials. 

19 • Several clinical and policy questions remain regarding the optimal use of the ICD. 

20 Put in terms of the criteria recommended in the tutorial, the use of ICDs is a potential 

21 application of Bayesian methods because (a) CMS is particularly interested in the use of 
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ICDs for subgroups of patients, such as those aged 65 years and above and those at 

highest risk for sudden cardiac death; (b) the information for some of these subgroups is 

inconclusive, due to small sample sizes (i.e., thus satisfying the condition of “some but 

not quite enough data”); and (c) other information – for example, data from other 

subgroups – is available. ICDs have been subjected to multiple randomized trials, with 

results that are not entirely consistent, especially when specific subgroups are 

considered in isolation. Thus, Bayesian methods might be used to “gain strength” by 

combining data both within and across studies, and also to resolve some of the 

apparent inconsistencies in our knowledge about ICDs. 

This chapter provides basic clinical background about sudden cardiac death; ICDs; 

the trials; current CMS coverage decisions; other information that might be brought to 

bear on decisions about ICDs, such as registries; and a translation of CMS’ decisional 

context into the terminology of this report.  The following chapter will take the 

background of this case study as given, and explore some of the statistical properties of 

the application of Bayesian methods to the case study.   

Sudden Cardiac Death 

Sudden cardiac death (SCD), usually due to a ventricular tachyarrhythmia (rapid 

abnormal heart beat), is the most common cause of death in the United States 

accounting for up to 350,000 deaths per year.45  Each year, SCD claims more lives than 

stroke, lung cancer, breast cancer, and AIDS combined.  Although the overall number of 

cardiac deaths has decreased over the past decade, the proportion of cardiac deaths 

that are sudden has increased. This increase in the rate of SCD has resulted from our 
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inability to accurately identify those who will die suddenly and to improve the utilization 

of therapies that have been proven to reduce the risk of SCD in certain patient 

populations.   

The Implantable Cardioverter Defibrillator 

The ICD is a device that monitors heart rhythms and delivers shocks if dangerous 

rhythms are detected. Like a pacemaker, an ICD consists of a battery and pulse 

generator connected to one or more insulated wires or leads.  This generator and 

batteries are sealed together and implanted under the skin of a patient at risk for 

sudden cardiac death, usually near the patient’s shoulder.  The leads are threaded 

through the blood vessels from the ICD to the heart muscle.  Once inserted, the ICD 

continuously checks the heart rate, and when it detects a too-rapid or irregular 

heartbeat, it delivers a shock that aims to reset the heart to a more normal rate and 

electrical pattern. 

Recent clinical trials of patients considered at risk for sudden cardiac death have 

demonstrated that the ICD is the most effective therapy currently available for the 

prevention of sudden cardiac death.46-55  Although the overall mortality benefit from ICD 

therapy is evident, the magnitude of effectiveness of ICD therapy in clinically defined 

subgroups is unclear. In addition, given the substantial cost associated with ICD 

implantation and followup, the clinical and policy community currently are exploring 

methods of aiding in risk stratification for at-risk populations to increase the potential 

benefit of the ICD. 
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Current ICD Clinical Trials and Evidence of Efficacy 

Following the introduction of the ICD, there have been numerous clinical trials 

evaluating it’s efficacy in various at-risk populations.  The earliest trials evaluated the 

ICD in patients who had survived a previous sudden cardiac arrest or who presented 

with sustained ventricular tachycardia or syncope.  These trials included the Canadian 

Implantable Defibrillator Study (CIDS), the Antiarrhythmics Versus Implantable 

Defibrillators (AVID) trial, and the Cardiac Arrest Study Hamburg (CASH) trial.  Although 

the ICD was shown to be effective in this high-risk population, most patients who suffer 

sudden cardiac arrest do not survive this initial event.  Therefore subsequent trials 

sought to identify patients who although not survivors of a previous sudden cardiac 

arrest, were at a risk for sudden cardiac death high enough to benefit from ICD therapy.  

These trials included the two Multicenter Automatic Defibrillator Implantation Trials 

(MADIT-I and MADIT-II), the Defibrillators in Non-Ischemic Cardiomyopathy Treatment 

Evaluation (DEFINITE) trial, the Multicenter Unsustained Tachycardiac Trial (MUSTT), 

Defibrillator in Acute Myocardial Infarction Trial (DINAMIT), Coronary Artery Bypass 

Graft Patch trial (CABG-PATCH), and the largest trial being the Sudden Cardiac Death 

in Heart Failure Trial (SCD-HeFT). 

Table 2 lists the current ICD trials and their timings.  The primary and secondary 

prevention trials are sorted within the table by publication date to indicate when the 

results of the trials became publicly available and could potentially have been used for 

designing future trials, or stopping ongoing trials. Those trials marked with an asterisk 

indicate that their patient-level data are included in our case study analysis. 
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Table 3 lists the patient inclusion and exclusion criteria for the different trials, the 

number of patients randomized to ICD therapy and control, and the efficacy of the ICD 

in reducing total mortality as reported in the main trial publication.  Additional details 

regarding the distribution of patient characteristics are provided in Table 4 (Parts 1 and 

2) in the ICD case study.  The primary endpoint in almost all trials was total mortality 

(the exception being the MUSTT trial where although total mortality was reported, the 

primary endpoint was arrhythmic mortality or cardiac arrest).  Secondary endpoints 

included various outcomes such as arrhythmic mortality, non-arrhythmic mortality, 

cardiac hospitalizations, costs, and quality of life.  The main clinical characteristics 

which defined the patient populations included in the trials, or which were the focus of 

pre-defined subgroup analyses included: left ventricular ejection fraction (LVEF), QRS 

interval, New York Heart Association (NYHA) class, presence or absence of ischemia, 

and age of the patient. 

Current Clinical Practice Guidelines for ICD Implantation 

The American College of Cardiology (ACC), American Heart Association (AHA), and 

the Heart Rhythm Society (HRS) recently updated their guidelines for the implantation 

of cardiac pacemakers and antiarrhythmia devices.56  This revision updates previous 

versions published in 1984, 1991, 1998, and 2002.  The most recent revision includes 

evidence from all of the clinical trials included in our case study.  In the guideline, Class 

I recommendations are those whether the benefit is greater than the risk and 

implantation of an ICD is recommended. 
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For secondary prevention of SCD and ventricular arrhythmias, the 

ACC/AHA/NASPE 2008 guidelines list the following Class I indications for ICD therapy: 

1. Cardiac arrest due to ventricular fibrillation (VF) or hemodynamically unstable 

sustained ventricular tachycardia (VT) after exclusion of any completely 

reversible causes. 

2. Spontaneous sustained VT in association with structural heart disease. 

3. Syncope of undetermined origin with clinically relevant, hemodynamically 

significant sustained VT or VF induced at electrophysiologic study (EPS). 

4. Spontaneous sustained VT in patients without structural heart disease not 

amenable to other treatments. 

For the primary prevention of SCD, according to the Class I recommendations in the 

2008 guidelines for ICD therapy, patients with ischemic cardiomyopathy with an LVEF < 

30 percent should be considered for an ICD regardless of their NYHA class.  Patients 

with ischemic cardiomyopathy and a LVEF > 30 percent but ≤ 35 percent should be 

considered for an ICD if they have NYHA Class II or III heart failure symptoms.  For 

both indications, patients must be at least 40 days post-myocardial infarction (MI) and > 

3 months post-revascularization. In addition, the new Class I recommendations for ICD 

therapy now include patients with nonischemic dilated cardiomyopathy and an LVEF ≤ 

35 percent who have NYHA Class II or III heart failure.  Note that all recommendations 

apply only to patients who are receiving optimal medical therapy and have reasonable 

expectation of survival with good functional capacity for more than 1 year. 
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Current CMS Coverage of ICD Implantation 
 

Along with the professional societies and their assessment of the evidence regarding 

the ICD’s efficacy in prevention of sudden cardiac death, CMS has also reviewed the 

evidence several times and modified their coverage decision regarding ICDs.  CMS first 

issued a Medicare National Coverage Determination in 1986 providing limited coverage 

of ICDs. The policy has expanded over the years with revisions in 1991, 1999, 2003, 

and most recently 2005. Each of these revisions has been prompted by the publication 

of new evidence regarding the efficacy of the ICD in different patient populations.  The 

most recent coverage includes the following covered indications: 

1. Documented episode of cardiac arrest due to ventricular fibrillation (VF), not 

due to a transient or reversible cause (effective July 1, 1991) 

2. Documented sustained ventricular tachyarrhythmia (VT), either spontaneous 

or induced by an electrophysiology (EP) study, not associated with an acute 

myocardial infarction (MI) and not due to a transient or reversible cause 

(effective July 1, 1999); 

3. Documented familial or inherited conditions with a high risk of life-threatening 

VT, such as long QT syndrome or hypertrophic cardiomyopathy (effective July 

1, 1999); 

4. Patients with ischemic dilated cardiomyopathy (IDCM), documented prior 

myocardial infarction (MI), NYHA Class II and III heart failure, and measured 

left ventricular ejection fraction (LVEF) < 35 percent; 

5. Patients with nonischemic dilated cardiomyopathy (NIDCM) > 9 months, 

NYHA Class II and III heart failure, and measured LVEF < 35 percent;  
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6. Patients who meet all current CMS coverage requirements for a cardiac 

resynchronization therapy (CRT) device and have NYHA Class IV heart 

failure; 

For patients in groups 4 to 6 the following criteria must also be met: 

1. Patients must not have had a coronary artery bypass graft (CABG) or 

percutaneous transluminal coronary angioplasty (PTCA) within the past 3 

months; 

2. Patients must not have had an acute MI within the past 40 days;  

3. Patients must be enrolled in either an FDA-approved clinical trial, or a 

qualified data collection system. 

ACC-NCDR® ICD Registry 

CMS’ objective when it required patients receiving ICDs under its 2006 NCD to be 

enrolled in a registry was to determine if use of ICD therapy in the primary prevention of 

SCD is appropriate for the Medicare beneficiaries who meet the clinical conditions in the 

agency’s National Coverage Decision of January 2005. CMS approved the ACC

NCDR® which was already operating a registry for diagnostic catheterizations and/or 

coronary interventions in the cardiac catheterization lab to enroll ICD patients.   

As of June 2008, the registry had collected data from 1510 hospitals totaling over 

280,000 implants.57  Approximately 10,000 implants are entered into the registry per 

month. Although the registry is required for primary prevention patients potentially 

eligible for Medicare, 88 percent of implants are being done in hospitals entering all 

patients who are receiving ICDs. The registry data collection process collects over 130 
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data elements at the time of initial ICD implant, device upgrade, and device 

replacement.58 

Current Clinical and Policy Questions Regarding 


ICD Implantation 


Clinically there are numerous unanswered questions related to ICDs and the 

prevention of sudden cardiac death.  Many of these questions are hoped to be explored 

through the use of the ICD registry, others will require new clinical trials, and others may 

be evaluated through the combination of existing data sources.  Some of the questions 

which device makers, professional societies, researchers, providers, and policymakers 

are exploring include: 

•	 Can risk stratification techniques be used to either rule in “low-risk” patients, or 

rule out current “high-risk” patients? 

•	 Can we ethically randomize future patients to “no ICD” to find more effective (or 

cost effective) populations? 

•	 Will the clinical trial results be replicated in the community? 

•	 Are the devices and medical therapies in the existing trials similar enough to 

allow combining data among trials? 

•	 Can the results of the existing trials be extended to Medicare patients when the 

vast majority of patients within the trials were under 75 years of age? 

•	 Can trial results be extended to populations not well represented in the existing 

trials (e.g., those patients with chronic kidney disease)? 
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•	 Can the ICD registry be used to answer questions about subgroups of uncertain 

efficacy in the trials? 

We next explore how these questions and past research provide examples of CMS 

decisional contexts. 

CMS Contexts 

The clinical domain of the prevention of sudden cardiac death and the existing 

clinical trials which have evaluated the use of the ICD in populations at risk for sudden 

death provide illustrative examples of each of the four CMS decisional contexts we used 

to frame this project.  We detail here either existing or potential examples of these four 

situations. 

Situation 1: Applicants present CMS with results that suggest none or minimal 

efficacy of an intervention for the overall population, but apparent effectiveness in a 

subgroup or subgroups, and are requesting reimbursement for those subgroups only. 

Although the above situation has not occurred related to ICD therapy specifically 

there are several patient populations where CMS currently restricts ICD coverage based 

on the existing trials. These include: 

• New York Heart Association (NYHC) classification IV;  

•	 Had a coronary artery bypass graft (CABG) or percutaneous transluminal 
 

coronary angioplasty (PTCA) within past 3 months; 
 

• Had an acute MI in the past 40 days 

• Patients with non-ischemic dilated cardiomyopathy (NIDCM) < 9 months 
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These populations are being explored where possible in the ICD registry as well as 

through novel trials by the device industry and clinical researchers. 

Situation 2: Applicants present CMS with results that suggest that an intervention is 

efficacious overall, but concern is raised that the benefits might be less in some 

subgroups.  CMS must decide whether to reimburse the intervention without restriction, 

or require more information for these particularly problematic subgroups. 

Throughout the ICD clinical trial history, CMS has been faced with this situation 

several times. Although in 5 of the 8 primary prevention trials (MADIT-I, MADIT-II, 

SCD-HeFT, COMPANION, and MUSTT) the ICD demonstrated a significant reduction 

in total mortality, two trials did not show a reduction in mortality (CABG-PATCH, 

DINAMIT), and the DEFINITE trial was associated with a non-significant reduction in 

risk of death from any cause. Based on the results of these trials however, the device 

industry and the clinical community have worked with CMS to define coverage for 

specific populations. As the trials were ongoing several areas of potential concern 

however were expressed by CMS or the clinical community and have been reflected in 

CMS’s changing coverage of ICD therapy.  Examples of subgroup uncertainties within 

the existing trials include: 

•	 Effectiveness by NYHA class: subgroup analysis from SCD-HeFT trial (which 

was positive overall) showed significant benefit from an ICD in patients with 

NYHA Class II but not Class III symptoms.  These observations contradict other 

studies in which NYHA Class III patients were well represented (MADIT-I and II, 

DEFINTITE and COMPANION) and for that subgroup ICD was significantly 

efficacious. 
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•	 Effectiveness by QRS interval: Prior to the reporting of the SCD-HeFT trial, 

subgroup analysis from existing trials suggested less efficacy with narrower QRS 

interval. In 2003, CMS made a controversial coverage restriction, limiting 

coverage to patients with QRS > 120 ms. This restriction was lifted in 2005 after 

the SCD-HeFT trial results were reported.   

•	 Effectiveness by Ejection Fraction (EF): based on an earlier meta-analysis,59 it 

did not appear that ICD was as effective for patients with better contraction (EF > 

30 percent). Note however that it was questioned whether the potentially less 

frequent arrhythmias in this subgroup and length of followup in the trials would 

allow sufficient exploration of the efficacy of the ICD in this patient population. 

• Effectiveness for patients whose heart failure is not caused by ischemia. The 

representation of patients with non-ischemic disease has been small with only 

the SCD-HeFT and DEFINITE trial having substantial representation  

• Effectiveness by age: the mean age of patients in the clinical trials was in the 

early 60s, and more than 80 percent of patients were under 75 years of age.  

Conversely, the Medicare population is comprised of over 40 percent people over 

the age of 75. The efficacy of the ICD in these patients is uncertain – especially 

given competing mortalities. 

• Effectiveness in women: only 19 percent of patients in the clinical trials were 

women. By contrast, the Medicare population from the ICD registry is almost 25 

percent women, and the total Medicare population is over 55 percent women.  

The efficacy of the ICD in women is uncertain and requires further study. 
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•	 Placement of ICDs in patients who do not use them: only ~30 percent of patients 

in the treatment arms of ICD trials have received appropriate shocks (i.e., that 

could have alleviated sudden death); that nearly two-thirds of ICD recipients do 

not make use of the device (during the trial period) suggests a need to identify 

better patient-level predictors of utility – while also emphasizing the limits of our 

knowledge given the shortened time horizon of most clinical trials. 

The effect of patient characteristics of NYHA class, age, ejection fraction, and 

ischemia are explored in our case study.   

Situation 3: Applicants present CMS with results that suggest that an intervention is 

efficacious, however the trial in question has been performed on a different population 

(e.g., patients aged 55 to 64). The applicants wish to extend the results to patients of 

interest to CMS. 

As detailed in Table 4 (Parts 1 and 2), although all of the ICD clinical trials have 

included patients over 65, the mean age of patients within the trials ranged from 57 

years to 65 years with between 2 percent to 18 percent of the patient populations within 

a trial being over 75 years. There is uncertainty within the clinical community as to the 

effectiveness of the ICD in the elderly.  Although the ICD may be effective in decreasing 

sudden death, the contribution of competing mortality, and the potential for greater 

morbidity need to be considered. 

Situation 4: Previous completed trials have demonstrated efficacy in high-risk 

populations, applicants are designing a new trial in a lower-risk population of interest to 

CMS and request feedback concerning their proposed trial design and analysis. 

71
 




 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

 

The clinical trials described in this section were completed in 2003.  Since that time, 

the exploration of the ICD in additional populations has continued.  Several areas have 

received particular focus. These include (1) risk stratification methods for high-risk 

populations (e.g., use of T-wave alternans in predicting sudden cardiac death), (2) new 

ICD devices (e.g., trials exploring the use of remote monitoring ICDs), (3) populations 

which have not been well represented in trials (e.g., patients with chronic kidney 

disease), or (4) populations that are currently restricted from CMS coverage (e.g., early 

post MI patients). A listing of currently recruiting ICD trials can be found on 

ClinicalTrials.gov (see search results at 

www.clinicaltrials.gov/ct2/results?term=defibrillator&recr=Open&pg=1&flds=Xabcdefgi). 
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1 Chapter 5. ICD Case Study (Executive Summary) 

2 Introduction 

3 In this section we provide an executive summary of our case study in terms of the 

4 analyses performed and our key findings.  For the interested reader, in the Appendix we 

5 provide additional details (both in terms of our methods and assumptions but also tables 

6 and figures of our findings).  More technical details will be published in a statistical 

7 manuscript. In this executive summary, references to the tables in the Appendix are for 

8 completeness. 

9 Prior to the case study described in this section, we performed substantial simulation 

10 studies to demonstrate that while single trials may be adequately powered to detect 

11 main treatment effects, they often have low power to detect differential treatment 

12 effects. Furthermore, these studies demonstrated that combining data from trials 

13 improves the power to detect such differential treatment effects.  Details about the 

14 simulation studies and our findings may be obtained from the authors and will be 

15 published in a statistical manuscript.  To explore the findings from our simulation studies 

16 and to provide evidence concerning the advantages and disadvantages of Bayesian 

17 techniques in clinical trial design and analysis, we performed a case study of the use of 

18 ICD therapy in the prevention of SCD using data from eight clinical trials. 

19 

20 
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Methods and Assumptions 

For the purposes of this case study, we considered data from eight trials (AVID, 

CABG-PATCH, CASH, DEFINITE, MADIT-I, MADIT-II, MUSTT and SCD-HeFT).  For 

any trial, the overall survival (in years from randomization) is the primary outcome.  

There are two treatment groups (ICD versus control) and four baseline prognostic 

variables, namely, age (in years), ejection fraction (given as a percent), NYHA class 

(Classes I through IV) and ischemic disease (yes/no).  We assumed that the four 

prognostic variables also capture differences in the trial designs.   

Besides the clinical trial data, we received ICD Registry data from the CMS, which 

includes 121,398 implants between 12/31/2004 and 6/30/2007.  The registry data does 

not include non-implanted controls and does not have followup information regarding 

patients’ overall survival.  Thus, for the purpose of illustration, we utilized registry data 

from the MUSTT study to address survival comparisons considering clinical trial and 

registry data. 

We performed four sets of analyses. These analyses focused on the use of data 

from individual trials, combining data from all trials, exploring the use of registry data, 

and then evaluating the impact of access to aggregate versus patient level data. 

In the analysis of the individual trials, we used models to compare overall survival by 

treatment groups. To most fully explore the impact of classical and Bayesian 

approaches we considered both an unadjusted analysis considering data from all 

patients in the trial as well as stratified analysis on subgroups.  We also considered 

analysis that adjusted for the common set of baseline prognostic variables, both, with 

and without the interaction between each of the baseline prognostic variables and 
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treatment. Note that statistical interaction means the effect of one independent 

variable(s) on the dependent variable depends on the value of another independent 

variable(s). 

We then performed a set of analyses where we combined data from all of the trials.  

We considered models that included or not the interactions between baseline prognostic 

variables and treatment. To combine data from all trials we considered four model 

variations: 1) combining data from all trials, but without adjusting for (potential) trial 

effects; 2) combining data from all trials adjusting for trial effects assuming a fixed 

effect for trial; 3) combining data from all trials assuming random effects for trial and 4) 

combining data from all trials assuming trial-specific baseline hazard functions.  

Bayesian estimation was also performed in the models.  We additionally considered a 

full hierarchical model utilizing random effects for baseline hazard functions, main and 

interaction effects. We performed sensitivity analyses on the priors used in our 

Bayesian analyses. 

In the analysis of registry data we used Bayesian techniques to simulate the survival 

experience of hypothetical patients in a hypothetical new trial under the ICD and control 

groups in given prognostic subgroups. Using these samples we obtained the posterior 

predictive survival distributions for the ICD and control groups which can then be 

compared to the empirical survival distribution of the related subgroups in the registry 

data. 

Finally, one critical aspect of our analysis is the availability of patient-level data from 

ICD trials. In practice, however, data analysts may face a situation in which only 

aggregate data are available; for example, in the form of estimates of the treatment 
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effect along with estimated standard errors.  Such data become available sequentially 

as trial results get published. We, thus, performed additional analyses to investigate 

two additional points: 

1. What are the implications of using aggregate data as opposed to using patient-

level data in assessing overall ICD efficacy? 

2. By considering the accumulated sequential evidence from trials, either using 

aggregate or patient-level data, would we be able to reach a conclusive decision of 

overall ICD efficacy sooner? 

We explored these questions under alternative models and choices of prior to 

explore their impact on our findings. Finally, using patient-level data, we also 

considered the accumulated sequential evidence from trials to assess differential-

treatment effect across prognostic subgroups.   

As noted, additional details on our methods (and findings) are provided for the 

reader in the Appendix. Technical details of the statistical models explored are 

available from the authors and will be published in a statistical manuscript. 
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Findings 
 

Analysis of Individual Trials 

Summary statistics for each trial by treatment group are shown in Table 4 (Parts 1 

and 2). The table shows that the trials considered in this case study differ in sample 

size with the smallest trial having 196 patients (MADIT-I) and the largest with 1676 

(SCD-HeFT) patients randomized to ICD and control.  Participants have different 

compositions across trials. For example, some trials such as CABG-PATCH, MADIT-I, 

MADIT-II and MUSTT had only ischemic patients while the DEFINITE trial only included 

non-ischemic patients. 

Figures 11(a) and 11(b) show the Kaplan-Meier survival curves by trial and 

treatment group. In the analysis of individual trials, without adjusting for prognostic 

variables, there is evidence of treatment effect on overall survival in five trials (AVID, 

MADIT-I, MADIT-II, MUSTT and SCD-HeFT) (see Table 5).  Among trials that showed 

treatment effect, the estimated hazard ratio (for death from all causes in the ICD group 

as compared to the control group) ranged from 0.35 to 0.75. Among trials that did not 

show treatment effect, the estimated hazard ratio ranged from 0.65 to 1.07.   

Comparisons of overall survival by treatment group within prognostic subgroups in 

general failed to show an association between treatment and overall survival (see Table 

6). Most entries in the table with significant results were no longer significant when 

considering Bonferroni’s adjustment of the p-values to account for multiple testing.  The 

only exception was in subgroup 4 (age < 65, EF < 30 percent, NYHA II and ischemic 

disease) in the SCD-HeFT trial (Bonferroni’s adjusted p-value < 0.001).  We note that 
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these results are affected by the small sample sizes in each subgroup (Table 7 [Parts 1

4]). 

When we adjusted for prognostic variables, the model demonstrates evidence of 

treatment effect on overall survival in the trials previously identified as well as in the 

DEFINITE trial (Appendix Tables A5-A12).  In general, there was no evidence of 

significant interactions when we explored the interaction between treatment and each of 

the prognostic variables. The exception was in CASH which showed significant 

treatment interaction with EF and NYHA class, MADIT-I with a significant interaction 

between treatment and EF and SCD-HeFT with a significant interaction between 

treatment and age and NYHA class.   

Key points: The analysis of the individual trials shows that, out of eight trials, five 

showed evidence of treatment effect, but there is also a lot of variation in the estimates 

of ICD effect across trials.  Within any trial, the results are fairly robust to different model 

formulations.  Generally, there is no evidence of significant differential treatment effects 

in the prognostic subgroups. 

Analysis of Data Combining All Trials 

Under all model formulations considered here, there is evidence of treatment effect 

on overall survival (Appendix Tables A13-A17).  Estimates from Bayesian models 

(Appendix Tables A18-A21), are generally similar to those obtained under the 

frequentist models. Note that the estimates have lower uncertainty as compared to 

those from the individual trials. 
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Appendix Table A22 shows estimates under the full Bayesian hierarchical model 

that accounts for trial variation in the baseline-hazard, main effects and interaction 

effects. To summarize the results we present the population estimates, as well as, the 

trial-specific estimates.  We find differential effect of ICD across trials.  In particular, we 

find no treatment effect in the CABG-PATCH and CASH (95 percent posterior credible 

intervals include the null value) trials. There is no evidence of interactions between 

treatment and any of the prognostic variables.  For ease of interpretation, in Table 8 we 

provide the median hazard ratios and the 95 percent credible intervals for the effect of 

treatment within the main subgroups defined by the prognostic variables for the 

individual trials and then for the entire population of trials.  We also provide the posterior 

probability that the hazard ratio for the total mortality reduction from the ICD treatment 

would be 0.80 or less as this was considered a clinically important reduction in mortality.  

So, for example, although the 95 percent credible interval for the overall hazard ratio for 

the reduction in mortality from ICD implant includes the value of no treatment efficacy 

(that is, a hazard ratio equal to 1), with 82 percent posterior probability the hazard ratio 

is 0.80 or less indicating a clinically significant reduction.  However, if one looks at the 

findings for treatment and NHYA class 4 patients we observe that not only there is no 

evidence of a significant interaction, but that there is only a 49 percent probability that 

the hazard ratio is 0.80 or less. In Table 9, we provide the same information (median 

hazard ratios, 95 percent credible intervals, and posterior probability that the hazard 

ratio is 0.80 or less) for each of the 48 subgroups.  Again note that there is no evidence 

of treatment benefit in the individual subgroups.  The probability that the hazard ratio is 
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0.80 or less however is greater than 75 percent in 5 of the subgroups indicated in red in 

the table. 

While these results seem to contradict those arising from Appendix Tables A13-A21, 

we note that this full hierarchical model accounts for a variety of sources of variation not 

accounted for in the previous models; for example, that the interactions between 

treatment and say the presence of ischemia may not be the same across trials.  But, in 

doing so, we deal with yet another issue in that some prognostic subgroups were not 

observed in all trials. When accounting for all of these sources of variation, there is no 

longer evidential support for interactions.   

Key points:  Combining data from trials improves our inferences by increasing the 

precision of our estimates as well as the power to detect main effects and interactions.  

There is a variety of modeling approaches that allow us to combine data from different 

trials, but they do not necessarily lead to the same inference.   

Understanding the underlying model assumptions and limitations is important when 

interpreting the results from the combined analysis.  For example, in this section we 

observed that some models showed evidence for an interaction between treatment and 

AGE in the combined analysis.  But this evidence arises from models that assume that 

this interaction is the same across all trials.  If this assumption is regarded 

unreasonable, and we consider instead a model that accounts for the variation of the 

interaction across trials, then the interaction between treatment and AGE is no longer 

significant. 
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Finally, when considering Bayesian estimation, the role of priors should also be 

examined through a sensitivity analysis.  We delay the discussion on the effect of priors 

to the section on “Analysis of Aggregate versus Patient-level Data,” below.  

Using Registry Data 

Table 10 provides descriptive characteristics of CMS ICD Registry patients.  As 

compared to patients recruited to the actual ICD trials, we note that patients in the 

registry are older and with worse prognosis. Of particular note is that more than 87 

percent of the patients in the CMS ICD Registry are NYHA Class II or greater while 

these patients represented approximately just two thirds of the trial patients. 

As we discussed before, the current CMS registry does not have survival after 

discharge. We, thus, utilized the registry data from the MUSTT study for illustrative 

purposes. Table 11 has descriptive statistics for the MUSTT registry.  We note that 

patients in the MUSTT registry also have different characteristics from those in the CMS 

registry. We also note that only approximately 35 percent of the patients in the MUSTT 

registry received beta-adrenergic blocking agents perhaps influencing the cohort’s 

mortality. 

Figures 12(a) and 12(b) show the posterior predictive survival distribution for the ICD 

and control groups along with the empirical survival distribution from the registry data in 

two subgroups. For these subgroups, there are few patients in the MUSTT registry who 

received an ICD.  Control patients in the MUSTT registry have better survival earlier on, 

but more comparable (to the posterior predictive survival) in later years.   
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Key points:  The above analysis illustrates that we can utilize Bayesian hierarchical 

models to predict survival from patients in subgroups.  The analysis shows, however, 

that survival predictions from the analysis based on randomized trials may not be 

comparable to the empirical survival observed in the registry.  The reason is that 

patients in the registry may have different prognosis from those seen in clinical trials.   

Analysis of Aggregate versus Patient-level Data 

Appendix Figure A5(a) [see also Appendix Table A28)] shows the results from the 

analysis that combines aggregate data sequentially mimicking when the trials were 

completed and their data available. Trials were combined in the following order (based 

on their publication date): MADIT-I, AVID, CABG-PATCH, MUSTT, CASH, MADIT-II, 

DEFINITE, SCD-HeFT. 

As we accumulate data from trials, the 95 percent posterior credible intervals under 

both priors get narrower. The gain of information with accumulated data is greater 

under the less informative prior. We demonstrate how under two priors, upon 

combining aggregate data from all trials, we can find only a borderline evidence of 

overall ICD efficacy under one prior, while we do not rule out no efficacy under the 

alternative prior. 

In contrast, Appendix Figure A5(b) [see also Appendix Table A29] shows the results 

from the analysis that combines patient-level data sequentially.  As we combine data 

from more trials, the estimates become more similar and precise.  Using the more 

informative prior we would have concluded overall ICD efficacy sooner with six trials.   
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Key points:  In this section we examined the use of patient-level data versus 

aggregate data as information accrues over time.  Our analysis showed that the 

resulting inferences are not necessarily the same.  The analysis of aggregate data may 

be more sensitive to priors.   

Finally, we note that the above analysis which assesses the interactions between 

treatment and covariates defining the subgroups of interest may not be feasible with 

aggregate data (see Pocock et al.26 for a review on issues with published subgroup 

analysis). 

We now further examine the Bayesian hierarchical model that combines patient-level 

data from all eight trials. In what follows we will state a sample of questions of clinical 

interest that we can examine with this model. 

Question 1: Is there evidence that the devices used in the different trials differ in terms 

of their efficacies? 

Answer: As we have discussed before, the Bayesian hierarchical model accounts for 

the variability within and between trials. In particular, we assume that ICD efficacy is 

trial-specific, but allow for the borrowing of information about ICD efficacy across trials.  

Figure 13 shows the estimates of treatment effect for each trial and the overall effect 

across all trials. There is evidence that treatment efficacy differs across trials.  Why 
 

this is the case is uncertain.  The differences in treatment efficacy could be due to 
 

differences in the devices used in the trials, but they could also be due to the patient 

population being different across trials – even after controlling for age, EF, NYHA 

class, and ischemia. For example, additional information concerning the QRS interval, 

gender, or time from myocardial infarction could explain the differences in ICD 
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efficacy. Accounting for these differences, under prior 1 we estimate that the hazard 

of death in the ICD group is exp(-0.43) = 0.65 times the hazard in the control group.  

The 95 percent posterior credible interval is (0.41, 1.03).  Under prior 2 we estimate 

the hazard of death in the ICD group is 0.66 times that in the control group with 95 

percent posterior credible interval (0.49, 0.90).  That is, under the more informative 

prior 2, our analysis supports the evidence of overall ICD efficacy across all trials. 

Question 2: Controlling for EF, ischemia, age, and NYHA class, are patients within the 

available trials similar? 

Answer: Another feature of our Bayesian hierarchical model is that it allows for the 

baseline survival functions to vary from trial-to-trial.  Figure 14 shows the estimated 

posterior baseline survival functions under each trial and overall trials.  Even 

controlling for EF, ischemia, age and NYHA class, the figure indicates that patients’ 

survival differ within the available trials. Patients in the SCD-HeFT trial seem to have 

the best survival prognosis. Patients in CABG-PATCH, AVID and MUSTT have poorer 

survival prognosis. Again, as discussed under Question 1, there are several potential 

explanations for this difference.  The variation across trials could be due to differences 

in the implanted devices, in the underlying medical care of the patient populations, or 

in patient characteristics that are currently not included in our analysis (e.g., gender, 
 

QRS interval, time from myocardial infarction).  To gain further insight into these 
 

differences, additional patient-level data would be required from the trials, and the 

Bayesian hierarchical model would need to be updated to reflect this additional 

knowledge.  Our group currently has a grant application under review to gain access to 
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this needed data and to update our Bayesian model so as to allow exploration of these 

described differences. 

Question 3: Is there evidence that the ICD has different effects across patient 

subgroups?  

Answer: The Bayesian hierarchical model also allows for trial-specific interactions.  

From our analysis [see Appendix Table A30], there was no evidence for overall 

interactions between treatment and the covariates that define the subgroups of 

interest. In other words, there was no evidence for differential treatment effect across 

prognostic subgroups.  We again direct the reader to Tables 8 and 9 for easier 

interpretation of these results. Table 8 provides the median hazard ratios and the 95 

percent credible intervals for the effect of treatment within the main subgroups defined 

by the prognostic variables for the individual trials and then for the entire population of 

trials. We also provide the posterior probability that the hazard ratio for the total 

mortality reduction from the ICD treatment would be 0.80 or less, as this was 

considered a clinically important reduction in mortality.  So, for example, although the 

95 percent credible interval for the overall hazard ratio for the reduction in mortality 

from ICD implant includes the value of no treatment efficacy (that is, a hazard ratio 

equal to 1), with 82 percent posterior probability the hazard ratio is 0.80 or less, 

indicating a clinically significant reduction.  However, if we consider the findings for 

treatment and NHYA class IV patients, we observe that not only is there no evidence 

of a significant interaction, but there is only a 49 percent probability that the hazard 

ratio is 0.80 or less. Table 8 shows that the data from the combined trials do not 

demonstrate a significant treatment effect given the main prognostic variables.  
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Similarly, in Table 9, we provide the same information (median hazard ratios, 95 

percent credible intervals, and posterior probability that the hazard ratio is 0.80 or less) 

for each of the 48 subgroups. Again, note that there is no evidence of treatment 

benefit in the individual subgroups.  The probability that the hazard ratio is 0.80 or less 

is, however, greater than 75 percent in five of the subgroups indicated in red in the 

table. 

Methodological and Clinical Implications of Findings 

This case study illustrates Situations 1, 2, and 3 (described under CMS contexts).  

For example, corresponding to Situation 1, in the CASH trial there was no overall 

efficacy of the ICD, but with a naïve analysis one could find efficacy within the subgroup 

with patients < 65 years old, ≤ 30 percent, NYHA Class II and ischemic disease.  

Illustrating Situation 2, the AVID trial supports overall efficacy of the device.  However, 

concern may be raised in the subgroup of patients with < 65 years old, ≤ 30 percent, 

NYHA Class III and ischemic disease, even though the survival comparison within the 

subgroup was not significant. Finally, illustrating Situation 3, some trials do not have all 

subgroups represented. For example, the DEFINITE trial was only on non-ischemic 

patients. 

Regarding Situations 1 and 2, testing for interactions at the individual trials often did 

not support the presence of differential treatment effects.  Combining data from the trials 

improves the power to detect interactions. However, in this case study, the analysis 

that combined data from the trials generally did not support the presence of interactions.  

Such conclusions are supported under different model formulations as well as different 
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estimation approaches. In particular, we note that our Bayesian estimation of the 

models that combined data from trials gave similar estimates to those obtained under 

the classical frequentist approaches.  This illustrates that for large studies, Bayesian 

inferences are less sensitive to prior choices. 

Utilizing the full Bayesian hierarchical model, we simulated the survival experience 

of hypothetical patients in a new clinical trial.  This accounts for both, the variation 

between and within clinical trials. Because of the borrowing of information across trials, 

this model allows us to predict survival even if an individual trial does not include some 

of the subgroups (thus, addressing Situation 3).  Using this approach, we note that the 

survival in the registry data is better (relative to those predicted by our model) in early 

years. We note, however, that such analysis has an exploratory feature as confounding 

might be present. We also note that this model could not be estimated using classical 

frequentist approaches. 

Finally, we note that the individual ICD studies were challenging to interpret when 

considered in isolation because of sample size, inconsistent statistical significance, and 

inconsistent subgroup effects.  This is just the circumstance that Bayesian methods 

work well and, indeed, when the studies were considered together in a Bayesian 

context ("borrowing strength" from other studies and other subgroups), the results 

were much more consistent. 
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1 Chapter 6. Interpretation of Findings in the CMS 

2 Context 

3 Statement of Findings 

4 Based on our review of the literature, simulation studies, and case study, we 

5 conclude the following concerning the use of Bayesian statistical approaches in CMS 

6 policy- and decisionmaking. 

7 

8 1. CMS should consider claims about differential subgroup effects only if 

9 they are accompanied by a formal statistical test for interaction.  In other 

10 words, aberrant subgroup results should not be taken at face value. 

11 a. Claims about differential subgroup effects based on stratified 

12 analysis should only be considered as exploratory.  These 

13 analyses are compromised by the small sample sizes and post hoc 

14 decisions regarding the number of tested subgroups.  [Evidence: In 

15 Table 5 we noted, for example, that there was no evidence of ICD 

16 efficacy in the DEFINITE trial.  However, in Table 6, using stratified 

17 analysis (and without adjustment for multiple testing) one could claim 

18 ICD efficacy in the subgroup age 75 or older, with EF less or equal to 

19 30 percent, NYHA III and non-ischemic.  However, Appendix Table A8 

20 shows that there is no significant interactions between treatment and 

21 prognostic variables in the DEFINITE trial] 
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b.	 Subgroup effects observed in a specific trial should be placed 

into context by using a statistical model that combines 

information across trials and across subgroups. The random

effects/hierarchical models do both. This will reduce the statistical 

error rates. [Evidence: In Appendix Table A7, there was some 

evidence for an interaction between treatment and ejection fraction in 

the CASH trial. However, other trials have not supported such an 

interaction. We formally examined this interaction across trials and 

subgroups with models that assessed the interaction using the 

combined data.  Such models also did not support the interaction 

between treatment and ejection fraction (see Appendix Tables A14-

A17 and A18-A21, using models estimated using frequentist or 

Bayesian methods, respectively).  However, the evidence from the 

combined analysis has improved precision.  Simulation results also 

show increased power to detect interactions in the combined analysis.] 

2. 	 To increase the statistical power to detect those interactions that in fact 

exist, consider using all sources of data in order to stipulate within the 

statistical model which types of interaction are likely.  For example, 

observational data and expert opinion might suggest that if an interaction is 

present it will take the form of decreasing ICD efficacy with increasing burden 

of disease. Looking specifically for this type of interaction will increase 

statistical power. [Evidence: See literature review in Chapter 3.] 
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3.	 Base study design and decisionmaking only on those subgroup effects 

that are likely to be strong.  The power to detect interactions is not 

universally high, and focusing attention on the most likely candidates will limit 

the number of subgroups that are analyzed, and thus limit the pernicious 

effects of random variation. [Evidence: See literature review in Chapter 3.] 

4.	 If the trial-based data are sufficient, do not directly combine trial-based 

data with information from other sources such as observational data 

and expert opinion.  Instead, use these other sources as informal sources of 

validation, and also to help design the statistical model for the trials (see 

below). [Evidence: See literature review in Chapter 3.] 

5. 	 When little or no trial-based information about a subgroup is available, 

consider the use of other data (e.g., trial-based information from other 

subgroups, observational data, expert opinion) in order to specify a 

prior distribution. Unless special circumstances such as small patient 

pools are present, do not use this information to make final decisions 

about efficacy within the subgroups in question, but instead use this 

information to plan further studies.  In essence, this finding suggests that 

the more controversial applications of Bayesian methodology should be 

reserved for those situations in which the decisionmaker has no other choice, 

and should, in any case, not be considered definitive.  [Evidence: See 
 

literature review in Chapter 3.]
 

6.	 Claims based on Bayesian methods should provide sensitivity analysis 

to the assumed priors. While for large trials the results are not sensitive to 
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7.	 Results from aggregate data analysis are not necessarily consistent 

with those obtained using patient-level data.  Aggregate data analysis 

may ignore, for example, additional sources of variation; for example, those 

that explain patient-to-patient variation within a study.  This is a critical point 

particularly in observational studies, where aggregate data can lead to 

confounding, and explains why CMS should continue to encourage 

investigators to submit their raw data to facilitate analysis.  [Evidence: See the 

section on “Analysis of Aggregate versus Patient-level Data” in Chapter 5.] 

8. 	 Combining data from trials sequentially may allow us to conclude 

overall efficacy sooner. As already pointed out under item 6, above, 

sensitivity analysis will clarify the role of the priors for reaching such a 

conclusion.  Although not illustrated here, a similar comment applies when 

analyzing data within any trial sequentially (that is, when performing interim 

analysis).  [Evidence: See the section on “Analysis of Aggregate versus 

Patient-level Data” in Chapter 5.] 
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Summary 

Bayesian statistical approaches provide a formal method of learning from evidence 

as it accumulates. The potential benefits of Bayesian approaches – especially when 

good prior information is available have allowed the use of these techniques to become 

more popular within the clinical trial community.  The impact of these approaches on 

CMS policy-level decisionmaking however is uncertain. 

In this report we provide an overview of the published literature concerning the 

advantages and disadvantages of Bayesian techniques in clinical trial design and 

analysis, the use of these approaches in subgroup analysis, and their strengths in meta

analysis of the clinical information as it accumulates.  We then evaluate Bayesian 

approaches compared with frequentist approaches through a series of simulation 

studies and a case study of ICD therapy in the prevention of sudden cardiac death.  

These analyses allow us to explore four decisional contexts in which CMS may consider 

the use of Bayesian approaches, namely where clinical trial results appear to 

demonstrate greater or lesser efficacy in particular subgroups (and applicants are 

wanting to determine whether the evidence supporting the intervention’s efficacy in 

these subgroups is sufficient from CMS’ viewpoint), where trial results focus on patient 

populations different from CMS beneficiaries, and where applicants are designing a new 

trial based on previous findings. In addition, as CMS considers the use of Bayesian and 

frequentist approaches in their decisional contexts, Bayesian techniques allow for ease 

of integration and consistency with a decision analytic framework. 

Based on our work, we provide suggestions to CMS concerning the use of Bayesian 

statistical approaches in policymaking. Incorporation of these findings into CMS 
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1 decisionmaking process may enable policymakers to harness the power of the available 

2 sources of clinical evidence, explore subgroup effects within a trial and across trials in a 

3 methodologically rigorous manner, assess the uncertainty in clinical trial findings – and 

4 ideally improve health outcomes for Medicare beneficiaries. 
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Glossary of Terms 

Adaptive designs 

Adaptive design is a trial design that allows modifications to some aspects of the 

trial after its initiation without undermining the validity and integrity of the trial.  

The following are examples of modifications to a trial: sample size re-estimation, 

early stopping due to efficacy or futility, adaptive randomization, and dropping 

inferior treatment groups. 

Baseline hazard function 

The hazard function in the absence of covariates. 

Bayesian analysis (or Bayesian statistics) 

An analysis that starts with a particular probability of an event (the prior 

probability) and incorporates new information to generate a revised probability (a 

posterior probability). 

Bayesian hierarchical model 

In a standard Bayesian model, the parameters are drawn from prior distributions, 

the parameters of which are fixed by the modeler.  In a hierarchical model, these 

parameters are also free to vary and are themselves drawn from priors.  This 

form of modeling is most useful for data that is composed of exchangeable 

groups for which the possibility is required that the parameters that describe each 

group might or might not be the same. The basic idea in a hierarchical model is 

that when you look at the likelihood function, and decide on the right priors, it 

may be appropriate to use priors that themselves depend on other parameters 

not mentioned in the likelihood. These parameters themselves will require priors, 
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which themselves may (or may not) depend on new parameters.  Eventually the 

process terminates when we no longer introduce new parameters. 

Bayes’ theorem 

Bayes' theorem relates the conditional and marginal probabilities of events A and 

B: 

P(A|B) = [P(B|A)P(A)]/P(B) 

where P(A) is the prior probability or marginal probability of A.  It is "prior" in the 

sense that it does not take into account any information about B.  P(A|B) is the 

conditional probability of A, given B.  It is also called the posterior probability 

because it is derived from or depends upon the specified value of B.  P(B|A) is 

the conditional probability of B given A.  P(B) is the prior or marginal probability of 

B. Intuitively, Bayes' theorem in this form describes the way in which one's 

beliefs about observing 'A' are updated by having observed 'B'. 

Bonferroni’s adjustment 

When performing multiple statistical significance tests on the same data, the 

Bonferroni adjustment can be applied to make it more "difficult" for any one test 

to be statistically significant. For example, when reviewing multiple correlation 

coefficients form a correlation matrix, accepting and interpreting the correlations 

that are statistically significant at the conventional 0.05 level may be 

inappropriate, given that multiple tests are performed.  Specifically, the alpha 

error probability of erroneously accepting the observed correlation coefficient as 

not-equal-to-zero when in fact (in the population) it is equal to zero may be much 

larger than .05 in this case. The Bonferroni adjustment usually is accomplished 
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by dividing the alpha level (usually set to .05, .01, etc.) by the number of tests 

being performing. 

Borrowing strength 

This is the tendency in a Bayesian model for the posterior distributions of 

parameters among exchangeable units to become narrower as a result of pooling 

information across units. 

Confidence interval 

The confidence interval is an interval estimate of a population parameter.  

Instead of estimating the parameter by a single value, an interval likely to include 

the parameter is given. Thus, confidence intervals are used to indicate the 

reliability of an estimate.  How likely the interval is to contain the parameter is 

determined by the confidence level or confidence coefficient.  Increasing the 

desired confidence level will widen the confidence interval. 

Cox proportional hazards model 

A model for ongoing risk over time in which the risks (hazards) are proportional 

among subgroups, but the base hazard may vary over time.   

Credible interval 

The calculated interval that has a specified (subjective) probability of containing a 

parameter of interest (such as a regression coefficient, or hazard ratio, for 

example), given the observed data. For example, if one obtained a 95 percent 

credible interval for some parameter, say, hazard ratio, of 0.77 to 0.96, with a 

mode of 0.85, then we would conclude that the most likely value of hazard ratio 
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was 0.85 and that we were 95 percent certain that the true value of hazard ratio 

was between 0.77 and 0.96. 

Fixed-effect model 

A model to generate a summary estimate of the magnitude of effect in a meta

analysis that restricts inferences to the set of studies included in the meta

analysis and assumes that a single true value underlies all of the primary study 

results. The assumption is that if all studies were infinitely large, they would yield 

identical estimates of effect; thus, observed estimates of effect differ from one 

another only because of random error. This model takes only within-study 

variation into account and not between-study variation. 

Hazard ratio 

The ratio of ongoing risk, between two groups being compared, of an outcome 

(e.g., death) – assumed to be constant over the study period; often reported in 

the context of survival analysis. 

Informative prior 

Informative priors have a stronger influence on the posterior distribution.  The 

influence of the prior distribution on the posterior is related to the sample size of 

the data and the form of the prior.  Generally speaking, large sample sizes are 

required to modify strong priors, where weak priors are overwhelmed by even 

relatively small sample sizes.  Informative priors are typically obtained from past 

data. 
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Interaction 

Statistical interaction means the effect of one independent variable(s) on the 

dependent variable depends on the value of another independent variable(s). 

Kaplan-Meier survival curves 

A plot of the Kaplan-Meier estimate of the survival function is a series of 

horizontal steps of declining magnitude which, when a large enough sample is 

taken, approaches the true survival function for that population.  The value of the 

survival function between successive distinct sampled observations is taken to 

be constant. 

Maximum likelihood estimation 

A method of parameter estimation in which a parameter is estimated to be that 

value for which the data are most likely.  For a fixed set of data and underlying 

probability model, maximum likelihood picks the value of the model parameters 

that make the data "more likely" than any other values of the parameters would 

make them. Maximum likelihood estimation gives a unique and easy way to 

determine solution in the case of the normal distribution and many other 

problems, although in very complex problems this may not be the case.  If a 

uniform prior distribution is assumed over the parameters, the maximum 

likelihood estimate coincides with the most probable values thereof. 

Non-informative prior 

Non-informative prior distributions (a.k.a., vague, flat and diffuse) are 

distributions that have no population basis and play a minimal role in the 

posterior distribution. The idea behind the use of non-informative prior 
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distributions is to make inferences that are not greatly affected by external 

information or when external information is not available.  The uniform 

distribution is frequently used as a non-informative prior. 

Posterior credible interval 

A Bayesian 95 percent posterior credible interval may be interpreted in a 

straightforward manner as an interval that contains the parameter of interest with 

95 percent probability given the observed data. 

Posterior predictive survival distribution 

The posterior predictive survival distribution is the survival distribution of 

unobserved observations (prediction) conditional on the observed data. 

Posterior probability 

Bayesian probability derived from the prior probability of an event and its 

likelihood, the latter derived from data. 

Prior (or “prior probability”) 

The prior (or prior probability) is interpreted as a description of what is known 

about a variable in the absence of further evidence. 

Prior distribution 

The prior distribution is a key part of Bayesian inference and represents the 

information about an uncertain parameter Θ that is combined with the probability 

distribution of new data to yield the posterior distribution, which in turn is used for 

future inferences and decisions involving Θ. 
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Random-effects model 

A model used to give a summary estimate of the magnitude of an effect in a 

meta-analysis that assumes that the studies included are a random sample of a 

population of studies addressing the question posed in the meta-analysis.  Each 

study estimates a different underlying true effect, and the distribution of these 

effects is often assumed to be normal around a mean value.  Because a random-

effects model takes into account both within-study and between-study variability, 

the confidence interval around the point estimate is, when there is appreciable 

variability in results across studies, wider than it could be if a fixed-effects model 

were used. 

Spline 

The term “spline” is used to refer to a wide class of functions that are used in 

applications requiring data interpolation and/or smoothing. 

Variance 

The technical term for the statistical estimate of the variability in results. 

Weibull regression model 

A proportional hazards model which uses the Weibull distribution.  It is a versatile 

distribution that can take on the characteristics of other types of distributions, 

based on the value of the shape parameter. 
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Acronyms and Abbreviations 
 

ACC 	 American College of Cardiology 

AHA 	  American Heart Association 

AIDS 	  Acquired immune deficiency syndrome 

AVID 	  Antiarrhythmics Versus Implantable Defibrillators trial 

CABG 	 Coronary artery bypass graft 

CABG-PATCH 	Coronary Artery Bypass Graft Patch trial 

CASH 	 Cardiac Arrest Study Hamburg trial 

CDRH 	  Center for Devices and Radiological Health 

CIDS 	  Canadian Implantable Defibrillator Study 

CMS 	 Centers for Medicare & Medicaid Services 

CRT	   Cardiac resynchronization therapy 

DEFINITE 	 Defibrillators in Non-Ischemic Cardiomyopathy Treatment 

Evaluation trial 

DINAMIT 	 Defibrillator in Acute Myocardial Infarction Trial 

EF	   Ejection fraction 

EP 	  Electrophysiology 

FDA 	 U.S. Food and Drug Administration 

HRS 	  Heart Rhythm Society 

ICD 	  Implantable cardioverter defibrillator 

ICDM 	  Ischemic dilated cardiomyopathy 

ISBA 	  International Society for Bayesian Analysis 

LVEF 	 Left ventricular ejection fraction 
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MADIT-I Multicenter Automatic Defibrillator Implantation Trial-I 

MADIT-II Multicenter Automatic Defibrillator Implantation Trial-II 

MCMC Markov chain Monte Carlo 

MI   Myocardial infarction 

MUSTT Multicenter Unsustained Tachycardiac Trial 

NIDCM Non-ischemic dilated cardiomyopathy 

NYHA New York Heart Association 

PTCA Percutaneous transluminal coronary angioplasty 

RCT   Randomized controlled trial 

SBP   Systolic blood pressure 

SCD   Sudden cardiac death 

SCD-HeFT Sudden Cardiac Death in Heart Failure Trial 

VF   Ventricular fibrillation 

VT   Ventricular tachycardi 
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Sensitivity = 180/(180 + 20) = 90% 

Meningitis Not meningitis 

Specificity = 640/(640 + 160) = 80% 
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Figure 2. Diagnostic test – 20% prior probability of disease 
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Figure 11(a): Kaplan-Meier survival curves by treatment group. 
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Figure 11(b): Kaplan-Meier survival curves by treatment group. (Note that in the SCD-HeFT trial the 

dotted red line corresponds to the “placebo” arm of the trial.) 
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Figure 12(a). Posterior predictive survival distributions under the ICD and control group for hypothetical 

patients with age [65,75), ejection fraction < 30%, NYHA II and ischemic disease and empirical survival 

distribution from corresponding registry patients in the MUSTT registry. 
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Figure 12(b). Posterior predictive survival distributions under the ICD and control group (for hypothetical 

patients with age 75+, ejection fraction < 30%, NYHA II and ischemic disease and empirical survival 

distribution from corresponding registry patients in the MUSTT registry. 
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Table 1. Included articles by theme* 

Theme Included Articles 

Advantages and disadvantages of Bayesian Austin et al., 20021 


techniques in clinical trial design and 
 Avins, 19982 


analysis (n = 41) Berry, 19933 
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George et al., 199418 


Goodman and Sladky, 200519 
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Greenhouse and Wasserman, 199521 


Grieve and Senn, 199822 


Howard, 200723 


Jones et al., 199824 
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Table 1. Included articles by theme* – continued 

Theme Included Articles 

Use of Bayesian techniques in subgroup 
analyses (n = 13) 

Ades et al., 200642 

Brookes et al., 200143 

Dixon and Simon, 199144 

Dixon and Simon, 199245 

Goodman and Sladky, 200519 

Greenland, 200746 

Jones et al., 199824 

Moher et al., 200147 

Pocock et al., 200248 

Pocock and Hughes, 199034 

Rothwell, 200549 

Simon, 200250 

The European Agency for the Evaluation of Medicinal 
Products Committee for Proprietary Medicinal Products, 
200251 

Use of Bayesian techniques in meta-analysis Berry, 19984 

(n = 10) Bloom et al., 20026 

Burr et al., 200352 

Jones, 199553 

Lambert et al., 200554 

Nguyen et al., 200755 

Normand, 199956 

Senn, 200757 
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Sutton and Abrams, 200159 

Effect of using Bayesian techniques on Ades et al., 200642 
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Briggs, 199961 

Briggs, 200162 

Hahn and Whitehead, 200363 
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Heitjan and Li, 200465 

Nixon and Thompson, 200566 

O’Hagan et al., 200067 

Sheingold, 200168 
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Table 2. Patient recruitment and followup timing in ICD primary and secondary prevention trials† 

Trial 87 Æ  90 91 92 93 94 94 96 97 98 99 00 01 02 03 Pub Date 
MADIT-I* 12/26/1996 
AVID* 11/27/1997 
CABG-PATCH* 12/27/1997 
MUSTT* 12/16/1999 
CIDS 3/21/2000 
CASH* 8/15/2000 
MADIT-II* 3/21/2002 
DEFINITE* 5/20/2004 
DINAMIT 12/9/2004 
SCD-HeFT* 1/20/2005 

† Shaded areas indicate those years during which the given trial was recruiting and following patients.  Trials shaded in black are considered primary prevention 
trials; those in gray are considered secondary prevention trials.  The date of publication of the main trial results are listed in the final column. 

* Indicates that patient-level data from the trial are included in the case study analysis.  

Abbreviations:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery Bypass Graft-Patch trial; CASH = Cardiac Arrest 
Study Hamburg trial; CIDS = Canadian Implantable Defibrillator Study; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; 
DINAMIT = Defibrillator in Acute Myocardial Infarction Trial; ICD = Implantable cardioverter defibrillator; MADIT-I = Multicenter Automatic Defibrillator Implantation 
Trial-I; MADIT-II = Multicenter Automatic Defibrillator Implantation Trial-II; MUSTT = Multicenter Unsustained Tachycardiac Trial; SCD-HeFT = Sudden Cardiac 
Death in Heart Failure Trial 
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Table 3. ICD clinical trial characteristics 

Trial Inclusion Criteria Exclusion Criteria Number of Patients Hazard Ratio for Death 
(95% CI) ICD Control 

MADIT-I* MI 3 weeks or more before 
study; unsustained VT; EF ≤ 

35% 

Indication for ICD, NYHA class IV, 
coronary revascularization within 
3 months 

95 101 0.46 
(0.26 to 0.82) 

AVID* Resuscitated from near-fatal 
ventricular fibrillation, 
sustained ventricular 
tachycardia with syncope, or 
sustained ventricular 
tachycardia with EF ≤ 40% 

NYHA class IV, EF ≥ 40% 507 509 0.62 
(0.47 to 0.81) 

CABG
PATCH* 

Scheduled for CABG, EF ≤  

35%, abnormalities on 
SAECG 

History of sustained VT or VF 446 454 1.07 
(0.81 to 1.42) 

MUSTT* CAD, EF ≤ 40%, asymptomatic 
non-sustained VT within 6 
months and not within 4 days 
after an MI or CABG 

History of syncope or sustained 
VT or VF more than 48 hours 
after an MI, recent CABG or 
PTCA, NYHA IV symptoms 

161 353 0.45 
(0.32 to 0.63) 

CIDS Documented VF; out-of-hospital 
cardiac arrest requiring 
defibrillation or cardioversion; 
documented, sustained VT 
causing syncope; other 
documented, sustained VT at 
a rate ≥ 150 beats/min, 
causing presyncope or angina 
in a patient with a left 
ventricular EF ≤ 35% 

ICD or amiodarone not considered 
appropriate as a treatment for 
the tachyarrhythmia, excessive 
perioperative risk for ICD 
implantation; previous 
amiodarone therapy for ≥ 6 
weeks; non-arrhythmic medical 
condition making 1-year survival 
unlikely, or long-QT syndrome 

328 331 0.82 
(0.60 to 1.1) 

CASH* Resuscitated from cardiac 
arrest secondary to 
documented sustained 
ventricular arrhythmias 

Cardiac arrest occurred within 72 
hours of an acute MI, cardiac 
surgery, electrolyte 
abnormalities, or proarrhythmic 
drug effect 

99 189 0.766 
(upper bound 1.112) 

* Indicates that patient-level data from the trial are included in the case study analysis.  
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Table 3. ICD clinical trial characteristics – continued 

Trial Inclusion Criteria Exclusion Criteria Number of Patients Hazard Ratio for Death 
(95% CI) ICD Control 

MADIT-II* MI 1 month or more before 
study; EF ≤ 30% 

Indication for ICD, NYHA class IV, 
coronary revascularization within 
3 months, MI within 1 month 

742 490 0.69 
(0.51 to 0.93) 

DEFINITE* EF ≤ 35%, ambient 
arrhythmias, symptomatic 
heart failure, presence of non-
ischemic cardiomyopathy 

NYHA class IV, non-ICD 
candidates, undergone EP 
testing within 3 months prior or 
had permanent pacemakers 

229 229 0.65 
(0.40 to 1.06) 

DINAMIT Within 4 to 40 days of an MI, 
EF ≤ 35%, impaired 
autonomic tone by heart rate 
variability 

NYHA class IV symptoms, CABG 
done since the qualifying MI or 
planned to be done within 4 
weeks, 3-vessel PTCA since 
qualifying infarct, on heart 
transplant list 

332 342 1.08 
(0.76 to 1.55) 

SCD-HeFT* NYHA class II or III symptoms, 
EF ≤ 35% and on optimal 
medical therapy 

NYHA IV symptoms, a history of 
cardiac arrest or spontaneous 
sustained VT not associated with 
an MI 

829 847 0.77 
(0.62 to 0.96) 

* Indicates that patient-level data from the trial are included in the case study analysis.  

Abbreviations for Table 3:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG = coronary artery bypass graft; CABG-PATCH = Coronary Artery 
Bypass Graft-Patch trial; CAD = coronary artery disease; CASH = Cardiac Arrest Study Hamburg trial; CI = confidence interval; CIDS = Canadian Implantable 
Defibrillator Study; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; DINAMIT = Defibrillator in Acute Myocardial Infarction 
Trial; EF = ejection fraction; EP = electrophysiology; ICD = implantable cardioverter defibrillator; MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; 
MADIT-II = Multicenter Automatic Defibrillator Implantation Trial-II; MI = myocardial infarction; MUSTT = Multicenter Unsustained Tachycardiac Trial; NYHA = New 
York Heart Association; PTCA = percutaneous transluminal coronary angioplasty; SAECG = signal averaging electrocardiogram; SCD-HeFT = Sudden Cardiac 
Death in Heart Failure Trial; VF = ventricular fibrillation; VT = ventricular tachycardia 
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Table 4. Descriptive statistics for prognostic variables stratified by trial and treatment groups – Part 1 (AVID, CABG-PATCH, CASH, and 
DEFINITE)* 

Characteristic 
AVID CABG-PATCH CASH DEFINITE 

Control ICD Control ICD Control ICD Control ICD 
Number of Patients 509 507 454 446 189 99 229 229 
Age Mean 

(SD) 
65.33 

(10.19) 
64.83 

(10.82) 
64.95 
(9.39) 

64.07 
(9.21) 

57.83 
(10.59) 

57.46 
(11.18) 

58.11 
(11.96) 

58.41 
(13.84) 

< 65 215 
(42.24%) 

229 
(45.17%) 

227 
(50.00%) 

223 
(50.00%) 

145 
(76.72%) 

72 
(72.73%) 

153 
(66.81%) 

148 
(64.63%) 

[65,75) 203 
(39.88%) 

185 
(36.49%) 

174 
(38.33%) 

168 
(37.67%) 

37 
(19.58%) 

25 
(25.25%) 

63 
(27.51%) 

51 
(22.27%) 

[75,85) 86 
(16.90% 

85 
(16.77%) 

53 
(11.67%) 

55 
(12.33%) 6 (3.17%) 2 (2.02%) 13 

(5.68%) 
30 

(13.10%) 

≥ 85 5 
(00.98%) 8 (1.58%) 0 0 1 (0.53%) 0 0 0 

Ejection Fraction Mean 
(SD) 

30.82 
(13.24) 

32.15 
(13.46) 

27.05 
(5.82) 

27.13 
(5.75) 

45.18 
(17.21) 

45.89 
(19.51) 

21.84 
(6.08) 

20.88 
(5.93) 

≤ 30% 294 
(58.22%) 

273 
(54.17%) 

323 
(71.15%) 

317 
(71.08%) 

35 
(20.47%) 

23 
(24.21%) 

215 
(93.89%) 

219 
(95.63%) 

> 30% 211 
(32.76%) 

231 
(45.83%) 

131 
(28.85%) 

129 
(28.92%) 

136 
(79.53%) 

72 
(75.79%) 

14 
(6.11%) 

10 
(4.37%) 

Ischemic Disease Yes 433 
(85.07%) 

435 
(85.80%) 

454 
(100.00%) 

446 
(100.00%) 

167 
(88.83%) 

88 
(88.89%) 0 0 

No 76 
(14.93%) 

72 
(14.20%) 0 0 21 

(11.17%) 
11 

(11.11%) 
229 

(100.00%) 
229 

(100.00%) 
NYHA Class I 313 

(61.49%) 
329 

(64.89%) 
258 

(56.95%) 
247 

(55.88%) 
54 

(29.35%) 
24 

(24.49%) 
41 

(17.90%) 
58 

(25.33%) 

II 136 
(26.72%) 

144 
(28.40%) 

85 
(18.76%) 

87 
(19.68%) 

106 
(57.61%) 

56 
(57.14%) 

139 
(60.70%) 

124 
(54.15%) 

III 60 
(11.79%) 

34 
(6.71%) 

81 
(17.88%) 

73 
(16.52%) 

24 
(13.04%) 

18 
(18.37%) 

49 
(21.40%) 

47 
(20.52%) 

IV 0 0 29 
(6.40%) 

35 
(7.92%) 0 0 0 0 

* Entries refer to means accompanied by standard deviations for continuous variables, or counts followed by percentages for categorical variables. 
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Table 4. Descriptive statistics for prognostic variables stratified by trial and treatment groups – Part 2 (MADIT-I, MADIT-II, MUSTT, and 
SCD-HeFT)* 

Characteristic 
MADIT-I MADIT-II MUSTT SCD-HeFT 

Control ICD Control ICD Control ICD Control ICD 
Number of Patients 101 95 490 742 353 167 847 829 
Age Mean 

(SD) 63.8 (8.82) 62.12 
(8.73) 

64.57 
(10.32) 

64.45 
(10.45) 

64.87 
(9.65) 

65.42 
(8.52) 

58.58 
(11.92) 

59.41 
(11.87) 

< 65 49 
(48.51%) 

53 
(55.79%) 

228 
(46.53%) 

345 
(46.50%) 

162 
(45.89%) 

72 
(43.11%) 

563 
(66.47%) 

535 
(64.54%) 

[65,75) 40 
(39.60%) 

36 
(37.89%) 

186 
(37.96%) 

269 
(36.25%) 

139 
(39.38%) 

77 
(46.11%) 

216 
(25.50%) 

215 
(25.93%) 

[75,85) 12 
(11.88%) 6 (6.32%) 69 

(14.08%) 
123 

(16.58%) 
50 

(14.16%) 
18 

(10.78%) 
64 

(7.56%) 
76 

(9.17%) 
≥ 85 0 0 7 (1.43%) 5 (0.67%) 2 (0.57%) 0 4 (0.47%) 3 (0.36%) 

Ejection Fraction Mean 
(SD) 

24.57 
(6.67) 

26.66 
(6.50) 

23.16 
(5.49) 

23.17 
(5.42) 

27.65 
(7.64) 

27.72 
(7.91) 

25.71 
(12.51) 

24.96 
(12.76) 

≤ 30% 84 
(83.17%) 

66 
(69.47%) 

488 
(99.59%) 

742 
(100.00%) 

229 
(64.87%) 

109 
(65.27%) 

513 
(60.57%) 

509 
(61.40%) 

> 30% 17 
(16.83%) 

29 
(30.53%) 

2 
(0.41%) 

0 
(0%) 

124 
(35.13%) 

58 
(34.73%) 

334 
(39.43%) 

320 
(38.60%) 

Ischemic Disease Yes 101 
(100.00%) 

95 
(100.00%) 

490 
(100.00%) 

742 
(100.00%) 

353 
(100.00%) 

167 
(100.00%) 

453 
(53.48%) 

431 
(51.99%) 

No 0 0 0 0 0 0 394 
(46.52%) 

398 
(48.01%) 

NYHA Class I 33 
(32.67%) 

36 
(37.89%) 

187 
(38.80%) 

256 
(34.83%) 

71 
(36.41%) 

38 
(34.55%) 0 0 

II 50 
(49.50%) 

44 
(46.32%) 

165 
(34.23%) 

259 
(35.24%) 

75 
(38.46%) 

43 
(39.09%) 

594 
(70.13%) 

566 
(68.28%) 

III 18 
(17.82%) 

15 
(15.79%) 

110 
(22.82%) 

187 
(25.44%) 

49 
(25.13%) 

29 
(29.36%) 

253 
(29.87%) 

263 
(31.72%) 

IV 0 0 20 
(4.15%) 

33 
(4.49%) 0 0 0 0 

* Entries refer to means accompanied by standard deviations for continuous variables, or counts followed by percentages for categorical variables. 

Abbreviations to Table 4 – Parts 1 and 2:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery Bypass Graft-Patch 
trial; CASH = Cardiac Arrest Study Hamburg trial; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; ICD = implantable 
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cardioverter defibrillator; MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter Automatic Defibrillator Implantation Trial-II; 
MUSTT = Multicenter Unsustained Tachycardiac Trial; NYHA = New York Heart Association; SCD-HeFT = Sudden Cardiac Death in Heart Failure Trial; SD = 
standard deviation 
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Table 5. Comparison of overall survival by treatment group within each trial, unadjusted Cox-
Proportional Hazards Model 

Trial 
Sample Size Number of Events Hazard  

Ratio 95% CI P-value Control ICD Control ICD 
AVID 509 507 122 80 0.61 0.46 0.81 < 0.001 
CABG
PATCH 454 446 95 101 1.07 0.81 1.42 0.635 
CASH 189 99 71 37 0.89 0.60 1.32 0.549 
DEFINITE 229 229 40 28 0.65 0.40 1.06 0.08 
MADIT-I 101 95 39 17 0.35 0.19 0.63 < 0.001 
MADIT-II 490 742 105 107 0.65 0.50 0.85 0.002 
MUSTT 353 167 158 35 0.42 0.29 0.60 < 0.001 
SCD-
HeFT 847 829 284 182 0.75 0.62 0.91 0.004 

Abbreviations:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery 
Bypass Graft-Patch trial; CASH = Cardiac Arrest Study Hamburg trial; CI = confidence interval; DEFINITE = 
Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; ICD = implantable cardioverter defibrillator; 
MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter Automatic Defibrillator 
Implantation Trial-II; MUSTT = Multicenter Unsustained Tachycardiac Trial; SCD-HeFT = Sudden Cardiac Death in 
Heart Failure Trial 
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Table 6. Comparison of overall survival by treatment group within each trial, stratified analysis* 

Sub
groups Age EF NYHA 

Isch/ 
Non-Isch AVID 

CABG
PATCH CASH DEFINITE MADIT-I MADIT-II MUSTT 

SCD-
HeFT 

1 < 65 ≤ 30% 1 NonIsch 0.22 - - 0.54 - - - -
2 < 65 ≤ 30% 1 Isch 0.40 0.19 0.32 - 0.12 0.36 0.74 -
3 < 65 ≤ 30% 2 NonIsch 0.80 - 0.48 0.73 - - - 0.25 
4 < 65 ≤ 30% 2 Isch 0.38 0.64 0.00 - 0.26 0.13 0.03 0.00 
5 < 65 ≤ 30% 3 NonIsch 0.07 - 0.23 0.31 - - - 0.91 
6 < 65 ≤ 30% 3 Isch 0.30 0.80 0.09 - 0.34 0.63 0.88 0.26 
7 < 65 ≤ 30% 4 NonIsch - - - - - - - -
8 < 65 ≤ 30% 4 Isch - 0.39 - - - 0.43 - -
9 < 65 > 30% 1 NonIsch 1.00 - 0.71 0.48 - - - -
10 < 65 > 30% 1 Isch 0.97 0.79 0.34 - 1.00 - 0.62 -
11 < 65 > 30% 2 NonIsch 0.86 - 0.62 1.00 - - - 0.94 
12 < 65 > 30% 2 Isch 0.86 0.41 0.74 - 0.07 - 0.03 0.70 
13 < 65 > 30% 3 NonIsch - - - 0.16 - - - 0.12 
14 < 65 > 30% 3 Isch 0.32 0.90 0.69 - - - 0.54 0.28 
15 < 65 > 30% 4 NonIsch - - - - - - - -
16 < 65 > 30% 4 Isch - 0.56  - - - - - -
17 [65,75) ≤ 30% 1 NonIsch 0.14 - - 0.35 - - - -
18 [65,75) ≤ 30% 1 Isch 0.34 0.96 - - 0.51 0.06 0.52 -
19 [65,75) ≤ 30% 2 NonIsch 0.48 - - 0.76 - - - 0.55 
20 [65,75) ≤ 30% 2 Isch 0.09 0.39 0.32 - 0.12 0.76 0.14 0.32 
21 [65,75) ≤ 30% 3 NonIsch 1.00 - - 0.46 - - - 0.78 
22 [65,75) ≤ 30% 3 Isch 0.29 0.58 0.95 - 0.08 0.00 0.00 0.34 
23 [65,75) ≤ 30% 4 NonIsch - - - - - - - -
24 [65,75) ≤ 30% 4 Isch - 0.15 - - - 0.72 - -
25 [65,75) > 30% 1 NonIsch 0.12 - - - - - - -
26 [65,75) > 30% 1 Isch 0.67 0.99 1.00 - 1.00 - 0.74 -
27 [65,75) > 30% 2 NonIsch - - - 1.00 - - - 0.75 

* Entries have p-values for the log-rank test (unadjusted for multiple testing) comparing survival by treatment in the subgroups of interest.  Missing entries indicate 
unavailable data for the particular subgroup.  P-values in red indicate significant results at the unadjusted significance level of 5%. 
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Table 6. Comparison of overall survival by treatment group within each trial, stratified analysis* – continued 

Sub
groups Age EF NYHA 

Isch/ 
Non-Isch AVID 

CABG
PATCH CASH DEFINITE MADIT-I MADIT-II MUSTT 

SCD-
HeFT 

28 [65,75) > 30% 2 Isch 0.50 0.54 0.25 - - - 0.20 0.00 
29 [65,75) > 30% 3 NonIsch 0.16 - - - - - - 0.11 
30 [65,75) > 30% 3 Isch 0.48 0.23 0.29 - 0.32 - 0.34 0.09 
31 [65,75) > 30% 4 NonIsch - - - - - - - -
32 [65,75) > 30% 4 Isch - 0.48  - - - - - -
33 ≥ 75 ≤ 30% 1 NonIsch 1.00 - - 0.06 - - - -
34 ≥ 75 ≤ 30% 1 Isch 0.89 0.30 - - - 0.55 0.14 -
35 ≥ 75 ≤ 30% 2 NonIsch 0.59 - - 0.85 - - - 0.15 
36 ≥ 75 ≤ 30% 2 Isch 0.95 0.48 - - 0.53 0.03 0.90 0.03 
37 ≥ 75 ≤ 30% 3 NonIsch - - - 0.02 - - - 0.18  
38 ≥ 75 ≤ 30% 3 Isch 0.67 0.80 - - - 0.21 0.12 0.79 
39 ≥ 75 ≤ 30% 4 NonIsch - - - - - - - -
40 ≥ 75 ≤ 30% 4 Isch - 1.00 - - - 0.39 - -
41 ≥ 75 > 30% 1 NonIsch 0.16 - - - - - - -
42 ≥ 75 > 30% 1 Isch 0.73 0.38 - - 1.00 - - -
43 ≥ 75 > 30% 2 NonIsch - - - - - - - 0.38  
44 ≥ 75 > 30% 2 Isch 0.95 0.32 0.88 - - - 0.28 0.72 
45 ≥ 75 > 30% 3 NonIsch - - - - - - - 1.00  
46 ≥ 75 > 30% 3 Isch 0.32 - - - - - 0.18 0.08 
47 ≥ 75 > 30% 4 NonIsch - - - - - - - -
48 ≥ 75 > 30% 4 Isch - - - - - - - -

* Entries have p-values for the log-rank test (unadjusted for multiple testing) comparing survival by treatment in the subgroups of interest.  Missing entries indicate 
unavailable data for the particular subgroup.  P-values in red indicate significant results at the unadjusted significance level of 5%. 

Abbreviations for Table 6:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery Bypass Graft-Patch trial; CASH = 
Cardiac Arrest Study Hamburg trial; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; EF = ejection fraction; Isch = ischemic; 
MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter Automatic Defibrillator Implantation Trial-II; MUSTT = Multicenter 
Unsustained Tachycardiac Trial; NonIsch = non-ischemic; NYHA = New York Heart Association; SCD-HeFT = Sudden Cardiac Death in Heart Failure Trial 
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Table 7. Comparison of overall survival by treatment group within each trial, stratified analysis, subgroup composition by trial and 
treatment group – Part 1 (AVID and CABG-PATCH) 

Sub
groups Age EF NYHA 

Isch/ 
Non-
Isch 

AVID CABG-PATCH 
Control ICD Control ICD 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

1 < 65 ≤ 30% 1 NonIsch 16 6 8 1 0 0 0 0 
2 < 65 ≤ 30% 1 Isch 38 7 62 8 84 13 83 7 
3 < 65 ≤ 30% 2 NonIsch 9 1 14 1 0 0 0 0 
4 < 65 ≤ 30% 2 Isch 31 11 28 5 35 7 34 8 
5 < 65 ≤ 30% 3 NonIsch 9 0 4 2 0 0 0 0 
6 < 65 ≤ 30% 3 Isch 15 10 8 3 28 5 24 6 
7 < 65 ≤ 30% 4 NonIsch 0 0 0 0 0 0 0 0 
8 < 65 ≤ 30% 4 Isch 0 0 0 0 8 4 12 3 
9 < 65 > 30% 1 NonIsch 7 0 5 0 0 0 0 0 
10 < 65 > 30% 1 Isch 72 4 78 5 47 4 43 3 
11 < 65 > 30% 2 NonIsch 5 2 5 1 0 0 0 0 
12 < 65 > 30% 2 Isch 11 1 13 2 12 1 8 0 
13 < 65 > 30% 3 NonIsch 0 0 1 0 0 0 0 0 
14 < 65 > 30% 3 Isch 2 1 2 0 10 3 11 3 
15 < 65 > 30% 4 NonIsch 0 0 0 0 0 0 0 0 
16 < 65 > 30% 4 Isch 0 0 0 0 2 0 6 1 
17 [65,75) ≤ 30% 1 NonIsch 10 2 10 0 0 0 0 0 
18 [65,75) ≤ 30% 1 Isch 56 13 53 8 74 16 57 12 
19 [65,75) ≤ 30% 2 NonIsch 5 0 7 1 0 0 0 0 
20 [65,75) ≤ 30% 2 Isch 31 11 24 4 21 6 30 13 
21 [65,75) ≤ 30% 3 NonIsch 3 0 1 1 0 0 0 0 
22 [65,75) ≤ 30% 3 Isch 16 7 5 1 23 9 21 11 
23 [65,75) ≤ 30% 4 NonIsch 0 0 0 0 0 0 0 0 
24 [65,75) ≤ 30% 4 Isch 0 0 0 0 10 0 12 3 
25 [65,75) > 30% 1 NonIsch 3 2 3 0 0 0 0 0 
26 [65,75) > 30% 1 Isch 52 11 52 9 28 5 31 6 
27 [65,75) > 30% 2 NonIsch 0 0 4 0 0 0 0 0 
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Table 7. Comparison of overall survival by treatment group within each trial, stratified analysis, subgroup composition by trial and 
treatment group – Part 1 (AVID and CABG-PATCH) – continued  

Sub
groups Age EF NYHA 

Isch/ 
Non-
Isch 

AVID CABG-PATCH 
Control ICD Control ICD 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

28 [65,75) > 30% 2 Isch 19 4 21 3 8 2 7 1 
29 [65,75) > 30% 3 NonIsch 2 0 1 1 0 0 0 0 
30 [65,75) > 30% 3 Isch 2 1 3 0 5 3 4 1 
31 [65,75) > 30% 4 NonIsch 0 0 0 0 0 0 0 0 
32 [65,75) > 30% 4 Isch 0 0 0 0 5 3 4 2 
33 ≥ 75 ≤ 30% 1 NonIsch 1 0 1 0 0 0 0 0 
34 ≥ 75 ≤ 30% 1 Isch 27 7 23 5 12 2 21 7 
35 ≥ 75 ≤ 30% 2 NonIsch 2 1 4 1 0 0 0 0 
36 ≥ 75 ≤ 30% 2 Isch 17 9 14 6 8 1 7 4 
37 ≥ 75 ≤ 30% 3 NonIsch 0 0 3 1 0 0 0 0 
38 ≥ 75 ≤ 30% 3 Isch 8 3 4 1 15 7 12 7 
39 ≥ 75 ≤ 30% 4 NonIsch 0 0 0 0 0 0 0 0 
40 ≥ 75 ≤ 30% 4 Isch 0 0 0 0 4 1 1 0 
41 ≥ 75 > 30% 1 NonIsch 2 0 1 1 0 0 0 0 
42 ≥ 75 > 30% 1 Isch 25 4 30 6 13 3 12 1 
43 ≥ 75 > 30% 2 NonIsch 1 0 0 0 0 0 0 0 
44 ≥ 75 > 30% 2 Isch 5 1 10 2 1 0 1 1 
45 ≥ 75 > 30% 3 NonIsch 1 1 0 0 0 0 0 0 
46 ≥ 75 > 30% 3 Isch 2 1 2 0 0 0 1 1 
47 ≥ 75 > 30% 4 NonIsch 0 0 0 0 0 0 0 0 
48 ≥ 75 > 30% 4 Isch 0 0 0 0 0 0 0 0 
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Table 7. Comparison of overall survival by treatment group within each trial, stratified analysis, subgroup composition by trial and 
treatment group – Part 2 (CASH and DEFINITE) 

Sub
groups Age EF NYHA 

Isch/ 
Non-
Isch 

CASH DEFINITE 
Control ICD Control ICD 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

1 < 65 ≤ 30% 1 NonIsch 0 0 0 0 29 3 34 2 
2 < 65 ≤ 30% 1 Isch 3 1 1 1 0 0 0 0 
3 < 65 ≤ 30% 2 NonIsch 1 0 2 1 89 10 78 8 
4 < 65 ≤ 30% 2 Isch 16 11 9 2 0 0 0 0 
5 < 65 ≤ 30% 3 NonIsch 2 2 1 0 24 5 29 3 
6 < 65 ≤ 30% 3 Isch 5 2 5 4 0 0 0 0 
7 < 65 ≤ 30% 4 NonIsch 0 0 0 0 0 0 0 0 
8 < 65 ≤ 30% 4 Isch 0 0 0 0 0 0 0 0 
9 < 65 > 30% 1 NonIsch 7 3 1 0 1 0 3 1 
10 < 65 > 30% 1 Isch 39 6 17 1 0 0 0 0 
11 < 65 > 30% 2 NonIsch 5 1 4 1 8 0 2 0 
12 < 65 > 30% 2 Isch 45 13 26 7 0 0 0 0 
13 < 65 > 30% 3 NonIsch 1 1 0 0 2 1 2 0 
14 < 65 > 30% 3 Isch 4 2 5 4 0 0 0 0 
15 < 65 > 30% 4 NonIsch 0 0 0 0 0 0 0 0 
16 < 65 > 30% 4 Isch 0 0 0 0 0 0 0 0 
17 [65,75) ≤ 30% 1 NonIsch 0 0 0 0 8 3 10 1 
18 [65,75) ≤ 30% 1 Isch 0 0 0 0 0 0 0 0 
19 [65,75) ≤ 30% 2 NonIsch 0 0 0 0 34 4 30 4 
20 [65,75) ≤ 30% 2 Isch 3 2 4 3 0 0 0 0 
21 [65,75) ≤ 30% 3 NonIsch 0 0 0 0 18 7 9 3 
22 [65,75) ≤ 30% 3 Isch 4 3 1 1 0 0 0 0 
23 [65,75) ≤ 30% 4 NonIsch 0 0 0 0 0 0 0 0 
24 [65,75) ≤ 30% 4 Isch 0 0 0 0 0 0 0 0 
25 [65,75) > 30% 1 NonIsch 0 0 0 0 1 1 0 0 
26 [65,75) > 30% 1 Isch 1 0 5 0 0 0 0 0 
27 [65,75) > 30% 2 NonIsch 0 0 1 1 1 0 2 0 
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Table 7. Comparison of overall survival by treatment group within each trial, stratified analysis, subgroup composition by trial and 
treatment group – Part 2 (CASH and DEFINITE) – continued 

Sub
groups Age EF NYHA 

Isch/ 
Non-
Isch 

CASH DEFINITE 
Control ICD Control ICD 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

28 [65,75) > 30% 2 Isch 19 8 5 3 0 0 0 0 
29 [65,75) > 30% 3 NonIsch 1 1 0 0 1 0 0 0 
30 [65,75) > 30% 3 Isch 5 5 6 5 0 0 0 0 
31 [65,75) > 30% 4 NonIsch 0 0 0 0 0 0 0 0 
32 [65,75) > 30% 4 Isch 0 0 0 0 0 0 0 0 
33 ≥ 75 ≤ 30% 1 NonIsch 0 0 0 0 2 2 11 3 
34 ≥ 75 ≤ 30% 1 Isch 0 0 0 0 0 0 0 0 
35 ≥ 75 ≤ 30% 2 NonIsch 0 0 0 0 7 1 11 2 
36 ≥ 75 ≤ 30% 2 Isch 0 0 0 0 0 0 0 0 
37 ≥ 75 ≤ 30% 3 NonIsch 0 0 0 0 4 3 7 1 
38 ≥ 75 ≤ 30% 3 Isch 1 1 0 0 0 0 0 0 
39 ≥ 75 ≤ 30% 4 NonIsch 0 0 0 0 0 0 0 0 
40 ≥ 75 ≤ 30% 4 Isch 0 0 0 0 0 0 0 0 
41 ≥ 75 > 30% 1 NonIsch 0 0 0 0 0 0 0 0 
42 ≥ 75 > 30% 1 Isch 0 0 0 0 0 0 0 0 
43 ≥ 75 > 30% 2 NonIsch 0 0 0 0 0 0 1 0 
44 ≥ 75 > 30% 2 Isch 5 2 2 1 0 0 0 0 
45 ≥ 75 > 30% 3 NonIsch 0 0 0 0 0 0 0 0 
46 ≥ 75 > 30% 3 Isch 1 1 0 0 0 0 0 0 
47 ≥ 75 > 30% 4 NonIsch 0 0 0 0 0 0 0 0 
48 ≥ 75 > 30% 4 Isch 0 0 0 0 0 0 0 0 
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Table 7. Comparison of overall survival by treatment group within each trial, stratified analysis, subgroup composition by trial and 
treatment group – Part 3 (MADIT-I and MADIT-II) 

Sub
groups Age EF NYHA 

Isch/ 
Non-
Isch 

MADIT-I MADIT-II 
Control ICD Control ICD 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

1 < 65 ≤ 30% 1 NonIsch 0 0 0 0 0 0 0 0 
2 < 65 ≤ 30% 1 Isch 14 3 12 0 91 10 124 9 
3 < 65 ≤ 30% 2 NonIsch 0 0 0 0 0 0 0 0 
4 < 65 ≤ 30% 2 Isch 21 8 15 3 81 10 115 8 
5 < 65 ≤ 30% 3 NonIsch 0 0 0 0 0 0 0 0 
6 < 65 ≤ 30% 3 Isch 9 5 7 2 44 8 87 13 
7 < 65 ≤ 30% 4 NonIsch 0 0 0 0 0 0 0 0 
8 < 65 ≤ 30% 4 Isch 0 0 0 0 8 2 15 5 
9 < 65 > 30% 1 NonIsch 0 0 0 0 0 0 0 0 
10 < 65 > 30% 1 Isch 2 0 11 0 1 0 0 0 
11 < 65 > 30% 2 NonIsch 0 0 0 0 0 0 0 0 
12 < 65 > 30% 2 Isch 3 2 7 1 0 0 0 0 
13 < 65 > 30% 3 NonIsch 0 0 0 0 0 0 0 0 
14 < 65 > 30% 3 Isch 0 0 1 1 0 0 0 0 
15 < 65 > 30% 4 NonIsch 0 0 0 0 0 0 0 0 
16 < 65 > 30% 4 Isch 0 0 0 0 0 0 0 0 
17 [65,75) ≤ 30% 1 NonIsch 0 0 0 0 0 0 0 0 
18 [65,75) ≤ 30% 1 Isch 7 2 7 1 67 15 86 11 
19 [65,75) ≤ 30% 2 NonIsch 0 0 0 0 0 0 0 0 
20 [65,75) ≤ 30% 2 Isch 16 7 17 6 60 11 107 17 
21 [65,75) ≤ 30% 3 NonIsch 0 0 0 0 0 0 0 0 
22 [65,75) ≤ 30% 3 Isch 6 4 6 3 46 19 62 8 
23 [65,75) ≤ 30% 4 NonIsch 0 0 0 0 0 0 0 0 
24 [65,75) ≤ 30% 4 Isch 0 0 0 0 10 4 12 5 
25 [65,75) > 30% 1 NonIsch 0 0 0 0 0 0 0 0 
26 [65,75) > 30% 1 Isch 5 0 5 0 0 0 0 0 
27 [65,75) > 30% 2 NonIsch 0 0 0 0 0 0 0 0 
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Table 7. Comparison of overall survival by treatment group within each trial, stratified analysis, subgroup composition by trial and 
treatment group – Part 3 (MADIT-I and MADIT-II) – continued  

Sub
groups Age EF NYHA 

Isch/ 
Non-
Isch 

MADIT-I MADIT-II 
Control ICD Control ICD 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

28 [65,75) > 30% 2 Isch 5 1 0 0 0 0 0 0 
29 [65,75) > 30% 3 NonIsch 0 0 0 0 0 0 0 0 
30 [65,75) > 30% 3 Isch 1 1 1 0 0 0 0 0 
31 [65,75) > 30% 4 NonIsch 0 0 0 0 0 0 0 0 
32 [65,75) > 30% 4 Isch 0 0 0 0 0 0 0 0 
33 ≥ 75 ≤ 30% 1 NonIsch 0 0 0 0 0 0 0 0 
34 ≥ 75 ≤ 30% 1 Isch 4 3 0 0 28 7 46 9 
35 ≥ 75 ≤ 30% 2 NonIsch 0 0 0 0 0 0 0 0 
36 ≥ 75 ≤ 30% 2 Isch 5 1 2 0 23 7 37 3 
37 ≥ 75 ≤ 30% 3 NonIsch 0 0 0 0 0 0 0 0 
38 ≥ 75 ≤ 30% 3 Isch 2 2 0 0 20 10 38 16 
39 ≥ 75 ≤ 30% 4 NonIsch 0 0 0 0 0 0 0 0 
40 ≥ 75 ≤ 30% 4 Isch 0 0 0 0 2 0 6 3 
41 ≥ 75 > 30% 1 NonIsch 0 0 0 0 0 0 0 0 
42 ≥ 75 > 30% 1 Isch 1 0 1 0 0 0 0 0 
43 ≥ 75 > 30% 2 NonIsch 0 0 0 0 0 0 0 0 
44 ≥ 75 > 30% 2 Isch 0 0 3 0 1 1 0 0 
45 ≥ 75 > 30% 3 NonIsch 0 0 0 0 0 0 0 0 
46 ≥ 75 > 30% 3 Isch 0 0 0 0 0 0 0 0 
47 ≥ 75 > 30% 4 NonIsch 0 0 0 0 0 0 0 0 
48 ≥ 75 > 30% 4 Isch 0 0 0 0 0 0 0 0 
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Table 7. Comparison of overall survival by treatment group within each trial, stratified analysis, subgroup composition by trial and 
treatment group – Part 4 (MUSTT and SCD-HeFT) 

Sub
groups Age EF NYHA 

Isch/ 
Non-
Isch 

MUSTT SCD-HeFT 
Control ICD Control ICD 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

1 < 65 ≤ 30% 1 NonIsch 0 0 0 0 0 0 0 0 
2 < 65 ≤ 30% 1 Isch 17 5 13 3 0 0 0 0 
3 < 65 ≤ 30% 2 NonIsch 0 0 0 0 141 22 133 14 
4 < 65 ≤ 30% 2 Isch 24 13 10 1 98 36 91 13 
5 < 65 ≤ 30% 3 NonIsch 0 0 0 0 57 14 48 12 
6 < 65 ≤ 30% 3 Isch 15 9 10 5 55 29 47 18 
7 < 65 ≤ 30% 4 NonIsch 0 0 0 0 0 0 0 0 
8 < 65 ≤ 30% 4 Isch 0 0 0 0 0 0 0 0 
9 < 65 > 30% 1 NonIsch 0 0 0 0 0 0 0 0 
10 < 65 > 30% 1 Isch 12 1 7 1 0 0 0 0 
11 < 65 > 30% 2 NonIsch 0 0 0 0 76 7 87 8 
12 < 65 > 30% 2 Isch 8 4 7 0 78 14 74 12 
13 < 65 > 30% 3 NonIsch 0 0 0 0 20 4 27 1 
14 < 65 > 30% 3 Isch 4 2 3 1 38 11 28 10 
15 < 65 > 30% 4 NonIsch 0 0 0 0 0 0 0 0 
16 < 65 > 30% 4 Isch 0 0 0 0 0 0 0 0 
17 [65,75) ≤ 30% 1 NonIsch 0 0 0 0 0 0 0 0 
18 [65,75) ≤ 30% 1 Isch 18 7 8 2 0 0 0 0 
19 [65,75) ≤ 30% 2 NonIsch 0 0 0 0 35 10 41 9 
20 [65,75) ≤ 30% 2 Isch 18 8 14 3 49 19 53 15 
21 [65,75) ≤ 30% 3 NonIsch 0 0 0 0 16 10 22 11 
22 [65,75) ≤ 30% 3 Isch 13 11 8 2 20 12 30 23 
23 [65,75) ≤ 30% 4 NonIsch 0 0 0 0 0 0 0 0 
24 [65,75) ≤ 30% 4 Isch 0 0 0 0 0 0 0 0 
25 [65,75) > 30% 1 NonIsch 0 0 0 0 0 0 0 0 
26 [65,75) > 30% 1 Isch 12 1 8 1 0 0 0 0 
27 [65,75) > 30% 2 NonIsch 0 0 0 0 20 5 12 3 

147
 
 




 

 

 

   

    

        
   
   
   
   
   
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    

 

  

 
 

 
 

Table 7. Comparison of overall survival by treatment group within each trial, stratified analysis, subgroup composition by trial and 
treatment group – Part 4 (MUSTT and SCD-HeFT) – continued  

Sub
groups Age EF NYHA 

Isch/ 
Non-
Isch 

MUSTT SCD-HeFT 
Control ICD Control ICD 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

28 [65,75) > 30% 2 Isch 11 3 7 0 48 17 34 1 
29 [65,75) > 30% 3 NonIsch 0 0 0 0 9 0 6 1 
30 [65,75) > 30% 3 Isch 5 2 2 0 19 5 17 10 
31 [65,75) > 30% 4 NonIsch 0 0 0 0 0 0 0 0 
32 [65,75) > 30% 4 Isch 0 0 0 0 0 0 0 0 
33 ≥ 75 ≤ 30% 1 NonIsch 0 0 0 0 0 0 0 0 
34 ≥ 75 ≤ 30% 1 Isch 9 2 2 1 0 0 0 0 
35 ≥ 75 ≤ 30% 2 NonIsch 0 0 0 0 11 6 7 1 
36 ≥ 75 ≤ 30% 2 Isch 6 2 4 1 18 8 12 2 
37 ≥ 75 ≤ 30% 3 NonIsch 0 0 0 0 1 1 6 1 
38 ≥ 75 ≤ 30% 3 Isch 9 5 5 0 12 7 19 9 
39 ≥ 75 ≤ 30% 4 NonIsch 0 0 0 0 0 0 0 0 
40 ≥ 75 ≤ 30% 4 Isch 0 0 0 0 0 0 0 0 
41 ≥ 75 > 30% 1 NonIsch 0 0 0 0 0 0 0 0 
42 ≥ 75 > 30% 1 Isch 3 1 0 0 0 0 0 0 
43 ≥ 75 > 30% 2 NonIsch 0 0 0 0 6 4 3 1 
44 ≥ 75 > 30% 2 Isch 8 3 1 1 14 3 19 3 
45 ≥ 75 > 30% 3 NonIsch 0 0 0 0 2 0 6 0 
46 ≥ 75 > 30% 3 Isch 3 3 1 0 4 0 7 4 
47 ≥ 75 > 30% 4 NonIsch 0 0 0 0 0 0 0 0 
48 ≥ 75 > 30% 4 Isch 0 0 0 0 0 0 0 0 

Abbreviations for Table 7 – Parts 1-4:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery Bypass Graft-Patch trial; 
CASH = Cardiac Arrest Study Hamburg trial; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; EF = ejection fraction; ICD = 
implantable cardioverter defibrillator; Isch = ischemic; MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter Automatic 
Defibrillator Implantation Trial-II; MUSTT = Multicenter Unsustained Tachycardiac Trial; NonIsch = non-ischemic; NYHA = New York Heart Association; SCD-HeFT 
= Sudden Cardiac Death in Heart Failure Trial 
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Table 8. Hazard ratios for the effect of treatment given main prognostic variables 

Variable Trial 
Hazard Ratio Probability 

HR ≤ 0.802.50% 50.00% 97.50% 
ICD Effect AVID 0.50 0.64 0.86 0.92 

CABG-PATCH 0.82 1.04 1.41 0.02 
CASH 0.56 0.83 1.25 0.43 
DEFINITE 0.39 0.62 0.95 0.87 
MADIT-I 0.26 0.45 0.71 0.99 
MADIT-II 0.48 0.62 0.82 0.95 
MUSTT 0.28 0.43 0.64 1.00 
SCD-HeFT 0.60 0.73 0.91 0.82 
Overall 0.41 0.65 1.03 0.82 

ICD and Age AVID 0.25 0.58 1.03 0.85 
[65,75) Effect CABG-PATCH 0.49 1.08 2.36 0.19 

CASH 0.22 0.68 2.01 0.61 
DEFINITE 0.26 0.67 1.68 0.62 
MADIT-I 0.12 0.53 2.06 0.73 
MADIT-II 0.18 0.62 1.37 0.70 
MUSTT 0.11 0.46 1.51 0.79 
SCD-HeFT 0.31 0.67 1.68 0.65 
Overall 0.29 0.66 1.43 0.69 

ICD and Age AVID 0.39 0.86 1.77 0.44 
75+ Effect CABG-PATCH 0.50 1.36 3.75 0.13 

CASH 0.08 0.38 1.95 0.83 
DEFINITE 0.15 0.40 1.30 0.87 
MADIT-I 
MADIT-II 

0.04 
0.20 

0.33 
0.66 

1.73 
1.94 

0.84 
0.62 

MUSTT 0.13 0.55 2.24 0.71 
SCD-HeFT 0.15 0.41 1.13 0.88 
Overall 0.23 0.58 1.40 0.78 

ICD and EF ≥ AVID 0.36 0.73 1.52 0.61 
30% Effect CABG-PATCH 0.29 0.69 1.77 0.62 

CASH 0.20 0.60 1.61 0.71 
DEFINITE 0.14 0.51 2.02 0.72 
MADIT-I 0.07 0.39 1.47 0.84 
MADIT-II 0.08 0.73 4.35 0.54 
MUSTT 0.11 0.51 1.80 0.75 
SCD-HeFT 0.30 0.61 1.75 0.65 
Overall 0.22 0.62 1.37 0.73 

ICD and NYHA AVID 0.26 0.54 1.00 0.89 
II Effect CABG-PATCH 0.52 1.29 3.31 0.17 

CASH 0.15 0.41 1.08 0.91 
DEFINITE 0.35 0.76 1.48 0.56 
MADIT-I 0.18 0.67 2.45 0.61 
MADIT-II 0.20 0.68 1.50 0.65 
MUSTT 0.10 0.33 1.18 0.91 
SCD-HeFT 0.30 0.45 0.68 1.00 
Overall 0.26 0.62 1.29 0.77 
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Table 8. Hazard ratios for the effect of treatment given main prognostic variables – continued 

Variable Trial 
Hazard Ratio Probability 

HR ≤ 0.802.50% 50.00% 97.50% 
ICD and NYHA AVID 0.24 0.53 1.24 0.85 
III Effect CABG-PATCH 0.44 0.95 2.34 0.36 

CASH 0.29 0.83 2.57 0.47 
DEFINITE 0.14 0.36 0.76 0.98 
MADIT-I 0.12 0.56 2.13 0.72 
MADIT-II 0.18 0.53 1.37 0.80 
MUSTT 0.12 0.37 1.27 0.87 
SCD-HeFT 0.60 0.90 1.34 0.26 
Overall 0.26 0.61 1.40 0.74 

ICD and NYHA AVID 0.03 0.84 18.64 0.48 
IV Effect CABG-PATCH 0.34 1.00 3.07 0.35 

CASH 0.03 0.57 11.70 0.61 
DEFINITE 0.04 0.75 14.64 0.53 
MADIT-I 0.03 0.67 12.22 0.56 
MADIT-II 0.37 1.63 5.37 0.16 
MUSTT 0.04 0.86 19.27 0.47 
SCD-HeFT 0.02 0.77 13.96 0.51 
Overall 0.20 0.84 3.43 0.49 

ICD and AVID 0.36 0.58 0.94 0.88 
Ischemic Effect CABG-PATCH 0.43 0.81 1.43 0.48 

CASH 0.15 0.46 1.22 0.90 
DEFINITE 0.09 0.50 2.86 0.71 
MADIT-I 0.11 0.31 0.93 0.95 
MADIT-II 0.42 0.71 1.17 0.69 
MUSTT 0.22 0.59 1.30 0.76 
SCD-HeFT 0.23 0.51 1.24 0.75 
Overall 0.24 0.57 1.21 0.80 

Abbreviations for Table 8:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary 
Artery Bypass Graft-Patch trial; CASH = Cardiac Arrest Study Hamburg trial; DEFINITE = Defibrillators in Non-
Ischemic Cardiomyopathy Treatment Evaluation trial; EF = ejection fraction; HR = hazard ratio; ICD = implantable 
cardioverter defibrillator; MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter 
Automatic Defibrillator Implantation Trial-II; MUSTT = Multicenter Unsustained Tachycardiac Trial; NYHA = New York 
Heart Association; SCD-HeFT = Sudden Cardiac Death in Heart Failure Trial 
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Table 9. Hazard ratios for the effect of treatment given 48 subgroups of prognostic variables 

Subgroup 
Age 

Group EF NYHA 
Isch/Non-
Isch 

Hazard Ratio Probability 
HR ≤ 0.80Lower Median Upper 

1 < 65 < 30% I Non-Isch 0.29 0.59 1.09 0.84 
2 < 65 < 30% I Isch 0.24 0.57 1.21 0.80 
3 < 65 < 30% II Non-Isch 0.26 0.62 1.29 0.77 
4 < 65 < 30% II Isch 0.22 0.58 1.42 0.75 
5 < 65 < 30% III Non-Isch 0.26 0.61 1.40 0.74 
6 < 65 < 30% III Isch 0.24 0.59 1.55 0.74 
7 < 65 < 30% IV Non-Isch 0.20 0.84 3.43 0.49 
8 < 65 < 30% IV Isch 0.18 0.81 3.43 0.50 
9 < 65 ≥ 30% I Non-Isch 0.22 0.62 1.37 0.73 

10 < 65 ≥ 30% I Isch 0.20 0.58 1.56 0.74 
11 < 65 ≥ 30% II Non-Isch 0.21 0.63 1.66 0.68 
12 < 65 ≥ 30% II Isch 0.18 0.60 1.79 0.70 
13 < 65 ≥ 30% III Non-Isch 0.22 0.64 1.72 0.66 
14 < 65 ≥ 30% III Isch 0.19 0.61 1.77 0.69 
15 < 65 ≥ 30% IV Non-Isch 0.17 0.89 4.51 0.46 
16 < 65 ≥ 30% IV Isch 0.16 0.85 3.89 0.46 
17 [65,75) < 30% I Non-Isch 0.29 0.66 1.43 0.69 
18 [65,75) < 30% I Isch 0.26 0.64 1.61 0.68 
19 [65,75) < 30% II Non-Isch 0.26 0.69 1.68 0.62 
20 [65,75) < 30% II Isch 0.23 0.66 1.84 0.65 
21 [65,75) < 30% III Non-Isch 0.26 0.70 1.78 0.62 
22 [65,75) < 30% III Isch 0.24 0.66 1.97 0.65 
23 [65,75) < 30% IV Non-Isch 0.22 0.95 4.33 0.43 
24 [65,75) < 30% IV Isch 0.20 0.93 4.27 0.43 
25 [65,75) ≥ 30% I Non-Isch 0.24 0.69 1.78 0.61 
26 [65,75) ≥ 30% I Isch 0.22 0.67 1.94 0.66 
27 [65,75) ≥ 30% II Non-Isch 0.21 0.72 2.09 0.57 
28 [65,75) ≥ 30% II Isch 0.20 0.68 2.29 0.61 
29 [65,75) ≥ 30% III Non-Isch 0.22 0.74 2.14 0.57 
30 [65,75) ≥ 30% III Isch 0.21 0.69 2.38 0.61 
31 [65,75) ≥ 30% IV Non-Isch 0.19 0.99 5.21 0.39 
32 [65,75) ≥ 30% IV Isch 0.17 0.96 5.00 0.41 
33 75+ < 30% I Non-Isch 0.23 0.58 1.40 0.78 
34 75+ < 30% I Isch 0.20 0.56 1.52 0.77 
35 75+ < 30% II Non-Isch 0.21 0.60 1.53 0.71 
36 75+ < 30% II Isch 0.21 0.56 1.66 0.73 
37 75+ < 30% III Non-Isch 0.21 0.61 1.61 0.73 
38 75+ < 30% III Isch 0.21 0.58 1.72 0.72 
39 75+ < 30% IV Non-Isch 0.18 0.83 4.05 0.49 
40 75+ < 30% IV Isch 0.15 0.80 4.27 0.50 
41 75+ ≥ 30% I Non-Isch 0.19 0.61 1.72 0.71 
42 75+ ≥ 30% I Isch 0.17 0.57 1.88 0.72 
43 75+ ≥ 30% II Non-Isch 0.18 0.62 1.91 0.66 
44 75+ ≥ 30% II Isch 0.17 0.59 2.10 0.69 
45 75+ ≥ 30% III Non-Isch 0.18 0.63 1.94 0.67 
46 75+ ≥ 30% III Isch 0.18 0.60 2.04 0.69 
47 75+ ≥ 30% IV Non-Isch 0.16 0.85 5.32 0.46 
48 75+ ≥ 30% IV Isch 0.14 0.80 4.74 0.50 

Abbreviations:  EF = ejection fraction; HR = hazard ratio; Isch = ischemic; Non-Isch = non-ischemic; NYHA = New 
York Heart Association 
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Table 10. Descriptive statistics for CMS ICD registry 

Characteristic Value 
Age 

Mean, years 72.78 
Median, years 73.5 

Standard deviation, years 9.89 
Ejection Fraction 

Mean, % 27.11 
Median, % 25 

Standard deviation, % 10.11 
NYHA Class 

Class I 13,812 (11.38 %) 
Class II 40,441 (33.31%) 
Class III 59,656 (49.14%) 
Class IV 6299 (5.19%) 

Ischemic Disease 
Yes 87,055 (71.71%) 
No 33,968 (27.98%) 

Abbreviations:  CMS = Centers for Medicare & Medicaid Services; ICD = implantable cardioverter defibrillator 
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Table 11. Descriptive statistics for MUSTT registry* 

Characteristic Control ICD 
Number of patients 1414 84 
Age Mean 

(SD) 
65.1 (9.50) 63.0 (9.20) 

< 65 607 (42.93%) 41 (48.81%) 
[65,75) 618 (43.71%) 38 (45.24%) 
[75,85) 186 (13.15%) 5 (5.95%) 
≥ 85 3 (0.21%) 0 

Ejection Fraction Mean 
(SD) 

28 (7.90) 27.7 (8.00) 

≤ 30% 878 (62.09%) 55 (65.48%) 
> 30% 536 (37.91%) 29 (34.52%) 

Ischemic Disease Yes 1414 (100.00%) 84 (100.00%) 
No 0 0 

NYHA Class I 249 (36.89%) 18 (51.43%) 
II 263 (38.96%) 13 (37.14%) 
III 162 (24.00%) 4 (11.43%) 
IV 1 (0.15%) 0 

* Entries refer to means accompanied by standard deviations for continuous variables, or counts followed by 
percentages for categorical variables. 

Abbreviations:  ICD = implantable cardioverter defibrillator; MUSTT = Multicenter Unsustained Tachycardiac Trial; 
NYHA = New York Heart Association; SD = standard deviation 
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Appendix. ICD Case Study 

Introduction 

In this Appendix we detail for the interested reader the case study and our findings.  

More details will be available in a statistical manuscript.  An executive summary of these 

findings are included in the full report. 

Prior to the case study described in this section, we performed substantial simulation 

studies to demonstrate that while single trials may be adequately powered to detect 

main treatment effects, they often have low power to detect differential treatment 

effects. Furthermore, these studies demonstrated that combining data from trials 

improves the power to detect such differential treatment effects.  Details about the 

simulation studies and our findings may be obtained from the authors and will be 

published in a statistical manuscript.  To explore the findings from our simulation studies 

and to provide evidence concerning the advantages and disadvantages of Bayesian 

techniques in clinical trial design and analysis, we performed a case study of the use of 

ICD therapy in the prevention of SCD using data from eight clinical trials. 

Methods and Assumptions 

For the purposes of this case study, we considered data from eight trials (AVID, 

CABG-PATCH, CASH, DEFINITE, MADIT-I, MADIT-II, MUSTT and SCD-HeFT).  For 

any trial, the overall survival (in years from randomization) is the primary outcome.  

There are two treatment groups (ICD versus control) and four baseline prognostic 

variables, namely, age (in years), ejection fraction (given as a percentage), NYHA class 
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(classes I through IV) and ischemic disease (yes/no).  Data were analyzed according to 

the intention-to-treat. Moreover, we assumed that the four prognostic variables also 

capture differences in the trial designs. We omitted from our analysis patients who had 

missing entries in any of the above covariates. 

Besides the clinical trial data, we received data from the CMS on the CMS ICD 

Registry patients representing patients who have had an ICD implanted and are 

requesting coverage from CMS.  The data represent 121,398 implants between 

12/31/2004 and 6/30/2007. We note, however, that the registry data are only on ICD 

patients; that is, there is no control group.  Moreover, the registry does not currently 

have follow-up information regarding patients’ overall survival.  Thus, for the purpose of 

illustration, we utilized registry data from the MUSTT study to address survival 

comparisons considering clinical trial and registry data. 

Analysis of Individual Trials 

We utilized Cox-Proportional hazards and Weibull regression models to compare 

overall survival by treatment groups.  An introductory text describing these types of 

survival models can be found here.1  The findings from these two models were 

qualitatively similar and so in our discussion here we only present those from the 

Weibull regression models. Although the Cox-Proportional hazards model is widely 

used, the Weibull regression model allows us to make comparisons of the estimation 

under Frequentist and Bayesian approaches on more similar modeling grounds.  Details 

of the other models are available from the authors and will be published in a statistical 

manuscript. 
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First, we considered unadjusted analysis considering data from all patients in the 

trial as well as stratified analysis on subgroups.  Second, we considered analysis that 

adjusted for the common set of baseline prognostic variables, both, with and without the 

interaction between each of the baseline prognostic variables and treatment. 

Analysis of Data Combining All Trials 

We utilized Weibull regression models to compare overall survival by treatment 

groups in unadjusted and adjusted analysis.  For the latter we considered models that 

included or not the interactions between baseline prognostic variables and treatment.  

To combine data from all trials we considered four model variations: 1) combining data 

from all trials, but without adjusting for (potential) trial effects; 2) combining data from all 

trials adjusting for trial effects assuming a fixed effect for trial; 3) combining data from all 

trials assuming a random effect for trial and 4) combining data from all trials assuming 

trial-specific baseline hazard functions. These models were estimated using maximum 

likelihood estimation.   

Bayesian estimation was also performed in the above Weibull regression models.  

Moreover, we additionally considered a full hierarchical model utilizing random-effects 

for baseline hazard functions, main and interaction effects.  We assumed normal priors 

for real-valued parameters (that is, parameters that can take on positive and negative 

values, such as the ICD effect).  Precision parameters were assigned Gamma priors.  

Moreover, scale and shape parameters of the baseline hazard were assigned log

normal priors. Fixed effect parameters were assigned priors with mean zero and 

variance one. Random effects parameters were assigned priors with an overall 
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population mean and population precision.  Population means were assigned priors with 

mean zero and variance one, while precision parameters were assigned priors with 

mean and variance equal to one. 

Using Registry Data 

We considered the random effects model (model 3 above) utilizing Bayesian 

estimation. This model formally accounts for the variability within and between trials.  

Using the posterior samples of the model parameters, we simulated the survival 

experience of hypothetical patients in a hypothetical new trial under the ICD and control 

groups in given prognostic subgroups. Using these samples we obtained the posterior 

predictive survival distributions for the ICD and control groups which can then be 

compared to the empirical survival distribution of the related subgroups in the registry 

data. 

Analysis of Aggregate versus Patient-level Data 

One critical aspect of our analysis is the availability of patient-level data from ICD 

trials. In practice, however, data analysts may face a situation in which only aggregate 

data are available; for example, in the form of estimates of the treatment effect along 

with estimated standard errors. Moreover, such data become available sequentially as 

trial results get published. We, thus, performed additional analyses to investigate two 

additional points: 

3. What are the implications of using aggregate data as opposed to using patient-

level data in assessing overall ICD efficacy? 
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4. By considering the accumulated sequential evidence from trials, either using 

aggregate or patient-level data, would we be able to reach a conclusive decision of 

overall ICD efficacy sooner? 

To answer the above questions, we considered fixed and random effects models 

and estimated these models under two different priors.  Prior 2 has higher precision 

than prior 1. We set prior 2 to have different precisions when comparing the analysis for 

aggregate or patient-level data as we clarify below when we discuss our findings.   

Finally, using patient-level data, we also considered the accumulated sequential 

evidence from trials to assess differential-treatment effect across prognostic subgroups.   

All analyses were performed in R (version 2.7.2) and Winbugs (version 1.4.3).  

Convergence diagnosis of our Bayesian models was performed using the package BOA 

available in R. Additional details concerning the statistical models explored are 

available from the authors and will be published in a statistical manuscript. 

Findings 

Analysis of Individual Trials 

Summary statistics for each trial by treatment group are shown in Appendix Table 

A1 (Parts 1 and 2). The table shows that the trials considered in this case study differ in 

sample size with the smallest trial having 196 patients (MADIT-I) and the largest with 

1676 (SCD-HeFT) patients randomized to ICD and control.  Moreover, participants have 

different compositions across trials. For example, some trials such as CABG-PATCH, 

MADIT-I, MADIT-II and MUSTT had only ischemic patients while the DEFINITE trial 

only included non-ischemic patients. 
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Appendix Figures A1(a) and A1(b) shows the Kaplan-Meier survival curves by trial 

and treatment group. In the analysis of individual trials, without adjusting for prognostic 

variables, there is evidence of treatment effect on overall survival in five trials (AVID, 

MADIT-I, MADIT-II, MUSTT and SCD-HeFT) (see Appendix Table A2).  Among trials 

that showed treatment effect, the estimated hazard ratio (for death from all causes in 

the ICD group as compared to the control group) ranged from 0.35 to 0.75.  Among 

trials that did not show treatment effect, the estimated hazard ratio ranged from 0.65 to 

1.07. 

Comparisons of overall survival by treatment group within prognostic subgroups in 

general failed to show an association between treatment and overall survival (see 

Appendix Table A3).  Moreover, most entries in the table with significant results were no 

longer significant when considering Bonferroni’s adjustment of the p-values to account 

for multiple testing. The only exception was in subgroup 4 (age < 65, EF < 30 percent, 

NYHA 2 and ischemic disease) in the SCD-HeFT trial (Bonferroni’s adjusted p-value < 

0.001). We note that these results are affected by the small sample sizes in each 

subgroup (Appendix Table A4 [Parts 1-4]).   

To adjust for prognostic variables, we utilized the Weibull regression model.  The 

model demonstrates evidence of treatment effect on overall survival in the trials 

previously identified as well as in the DEFINITE trial (Appendix Tables A5-A12).  We 

also fitted Weibull regression models including the interaction between treatment and 

each of the prognostic variables. In general, there was no evidence of significant 

interactions.  The exception was in CASH which showed significant treatment 

interaction with EF and NYHA class, MADIT 1 with a significant interaction between 
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treatment and EF and SCD-HeFT with a significant interaction between treatment and 

AGE and NYHA class. 

Before we move on to the next phase of the analysis we take a quick detour to 

explain in more detail the results we presented in Appendix Tables A5-A12.  Because 

all these tables have similar format, we do not discuss them individually, but focus on 

the results in Appendix Table A5. The left side of the table shows results that only 

include main effects, while the right side of the table shows results that include main 

effects and interactions between treatment and prognostic variables.  The results 

include estimates of the model parameters, standard errors and p-values.  For example, 

for the model that utilizes only main effects, we estimate that the hazard of death from 

all causes for a patient in the ICD group is exp(-0.43)=0.65 times the hazard of death for 

a patient in the control group.   

Appendix Figure A2 summarizes the analysis of the individual trials displaying 

estimates, along with the respective 95 percent confidence intervals, of the log-hazard 

of treatment effect for each trial.  The differences between estimates from models that 

do not adjust for covariates from those that do are, in general, relatively small.  Without 

covariate adjustment there is evidence of treatment effect on overall survival in five trials 

(AVID, MADIT-I, MADIT-II, MUSTT and SCD-HeFT) as shown in the figure with the 95 

percent CI excluding the null value (zero).  When considering covariate adjustment, we 

also find a (borderline) treatment effect in the DEFINITE trial.  We note, however, that 

the estimates vary from trial to trial. Moreover, the precisions for these estimates vary, 

with more precision attained in the largest trial (SCD-HeFT) with the narrowest 95 

percent CI. 
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Key points: The analysis of the individual trials shows that, out of eight trials, five 

showed evidence of treatment effect, but there is also a lot of variation in the estimates 

of ICD effect across trials.  Within any trial, the results are fairly robust to different model 

formulations.  Moreover, generally, there is no evidence of significant differential 

treatment effects in the prognostic subgroups. 

Analysis of Data Combining All Trials 

Under all model formulations considered here, there is evidence of treatment effect 

on overall survival (Appendix Tables A13-A17, with results presented in similar format to 

those discussed in the previous section).   

Moreover, estimates from Bayesian models (Appendix Tables A18-A21) with priors 

as described before, are generally similar to those obtained under the frequentist 

Weibull regression models (compare results under Appendix Tables A18-A21 with those 

from Appendix Tables A13-A17).  We note that in Appendix Tables A18-A21 we present 

the posterior mean, posterior standard deviation and 95 percent posterior credible 

intervals. Let us take the results under Appendix Table A18 for the model that only 

includes main effects for an example. We estimate that the hazard of death in the ICD 

is approximately exp(-0.38) = 0.68 times the hazard of death in the control group.  

Moreover, we estimate that with 95 percent posterior probability the hazard ratio lies 

between 0.61 and 0.76. 

Appendix Figure A3 summarizes results displaying estimates, along with the 

corresponding 95 percent confidence/credible intervals, of the log-hazard of treatment 

effect across different models.  The results show evidence of treatment effect on overall 
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survival and are very similar across all models considered here, that is, with or without 

covariate adjustment, and across different specifications for how trial data are 

combined, with Weibull regression models using frequentist or Bayesian approaches to 

estimation. Moreover, the estimates have lower uncertainty as compared to those from 

the individual trials (compare Appendix Figure A3 with Appendix Figure A2). 

The models that we discussed so far rely on strong assumptions as to how we 

accommodate trial differences. In one extreme end, we combine data assuming that 

trials are similar. Next, we relax this assumption and assume that trial differences are 

accommodated with fixed and random trial effects or allowing for trial-specific baseline 

hazard functions. However, we have allowed the effect of the prognostic variables, and 

the interactions to be similar across all trials.  Next, we discuss results from a Bayesian 

hierarchical model that will relax this assumption.  We note that an equivalent model, 

without priors in the population parameters, could not be estimated using classical 

frequentist approaches. 

Appendix Table A22 shows estimates under the full Bayesian hierarchical model that 

accounts for trial variation in the baseline-hazard, main effects and interaction effects.  

To summarize the results we present the population estimates, as well as, the trial-

specific estimates. From Appendix Table A22 we estimate, under the model that only 

includes main effects, that the hazard of death in the ICD is approximately exp(-0.43) = 

0.65 times the hazard of death in the control group.  Moreover, we estimate that with 95 

percent posterior probability the hazard ratio lies between 0.40 and 1.03.  This model 

also allows us to obtain the trial-specific effects.  We find differential effect of ICD across 

trials. In particular, we find no treatment effect in the CABG-PATCH and CASH (95 
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percent posterior credible intervals include the null value) trials. There is no evidence of 

interactions between treatment and any of the prognostic variables.  For ease of 

interpretation, in Appendix Table A23 we provide the median hazard ratios and the 95 

percent credible intervals for the effect of treatment within the main subgroups defined 

by the prognostic variables for the individual trials and then for the entire population of 

trials. We also provide the posterior probability that the hazard ratio for the total 

mortality reduction from the ICD treatment would be 0.80 or less as this was considered 

a clinically important reduction in mortality.  So, for example, although the 95 percent 

credible interval for the overall hazard ratio for the reduction in mortality from ICD 

implant includes the value of no treatment efficacy (that is, a hazard ratio equal to 1), 

with 82 percent posterior probability the hazard ratio is 0.80 or less indicating a clinically 

significant reduction.  However, if one looks at the findings for treatment and NHYA 

class 4 patients we observe that not only there is no evidence of a significant 

interaction, but that there is only a 49 percent probability that the hazard ratio is 0.80 or 

less. In Appendix Table A24, we provide the same information (median hazard ratios, 

95 percent credible intervals, and posterior probability that the hazard ratio is 0.80 or 

less) for each of the 48 subgroups. Again, note that there is no evidence of treatment 

benefit in the individual subgroups.  The probability that the hazard ratio is 0.80 or less 

however is greater than 75 percent in 5 of the subgroups indicated in red in the table. 

While these results seem to contradict those arising from Appendix Tables A13-A17, 

we note that this full hierarchical model accounts for a variety of sources of variation not 

accounted for in the previous models; for example, that the interactions between 

treatment and say the presence of ischemia may not be the same across trials.  But in 
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doing so, we deal with yet another issue in that some prognostic subgroups were not 

observed in all trials. When accounting for all of these sources of variation, there is no 

longer evidential support for interactions.   

We computed the Deviance Information Criterion (DIC) for all four models and 

including or not the interactions between treatment and baseline prognostic variables 

(Appendix Table A25). According to this criterion, models minimizing the DIC are 

preferred. We thus select the model with trial-specific baseline hazard functions.  The 

full Bayesian hierarchical model is a close second best according to this criterion.  

Because the full Bayesian hierarchical model accounts for more sources of variation we 

will utilize it for the upcoming discussions.  

Key points: Combining data from trials improves our inferences by increasing the 

precision of our estimates as well as the power to detect main effects and interactions.  

There is a variety of modeling approaches that allow us to combine data from different 

trials, but they do not necessarily lead to the same inference.  

Understanding the underlying model assumptions and limitations is important when 

interpreting the results from the combined analysis.  For example, in this section we 

observed that some models showed evidence for an interaction between treatment and 

AGE in the combined analysis.  But this evidence arises from models that assume that 

this interaction is the same across all trials.  If this assumption is regarded 

unreasonable, and we consider instead a model that accounts for the variation of the 

interaction across trials, then the interaction between treatment and AGE is no longer 

significant.  
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Finally, when considering Bayesian estimation, the role of priors should also be 

examined through a sensitivity analysis.  We delay the discussion on the effect of priors 

to the section on “Analysis of Aggregate vs. Patient-level data,” below. 

Using Registry Data 

Appendix Table A26 provides descriptive characteristics of CMS ICD Registry 

patients. As compared to patients recruited to the actual ICD trials, we note that 

patients in the registry are older and with worse prognosis.  Of particular note is that 

more than 87 percent of the patients in the CMS ICD Registry are NYHA Class II or 

greater while these patients represented approximately just two thirds of the trial 

patients. 

As we discussed before, the current CMS registry does not have overall survival.  

We, thus, utilized the registry data from the MUSTT study for illustrative purposes.  

Appendix Table A27 has descriptive statistics for the MUSTT registry.  We note that 

patients in the MUSTT registry also have different characteristics from those in the CMS 

registry. We also note that only approximately 35 percent of the patients in the MUSTT 

registry received beta-adrenergic blocking agents perhaps influencing the cohort’s 

mortality. 

Appendix Figures A4(a) and A4(b) show the posterior predictive survival distribution 

for the ICD and control groups along with the empirical survival distribution from the 

registry data in two subgroups. For these subgroups, there are few patients in the 

MUSTT registry who received an ICD. Control patients in the MUSTT registry have 
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better survival earlier on, but more comparable (to the posterior predictive survival) in 

later years. 

Key points:  The above analysis illustrates that we can utilize Bayesian hierarchical 

models to predict survival from patients in subgroups.  The analysis shows, however, 

that survival predictions from the analysis based on randomized trials may not be 

comparable to the empirical survival observed in the registry.  The reason is that 

patients in the registry may have different prognosis from those seen in clinical trials.   

Analysis of Aggregate versus Patient-level Data 

Appendix Figure A5(a) (see also Appendix Table A28) shows the results from the 

analysis that combines aggregate data sequentially mimicking when the trials were 

completed and their data available. Trials were combined in the following order (based 

on their publication date): MADIT-I, AVID, CABG-PATCH, MUSTT, CASH, MADIT-II, 

DEFINITE, SCD-HeFT. 

The figure shows that both fixed and random effects models give similar estimates.  

The estimates are lower and more precise when using the more informative prior 2.  As 

we accumulate data from trials, the 95 percent posterior credible intervals under both 

priors get narrower. The gain of information with accumulated data is greater under the 

less informative prior 1 than under prior 2.  Upon combining aggregate data from all 

trials, there is only a borderline evidence of overall ICD efficacy under prior 2.  We do 

not rule out no efficacy under prior 1. 

In contrast, Appendix Figure A5(b) (see also Appendix Table A29) shows the results 

from the analysis that combines patient-level data sequentially.  Estimates from the 
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fixed and random effects models are different when considering data from the first trial 

only (MADIT-1) which also has the smallest sample size.  This shows sensitivity to both 

models and priors. However, as we combine data from more trials, the estimates 

become more similar and precise.  Moreover, using the more informative prior we would 

have concluded overall ICD efficacy sooner with six trials.   

Some additional comments are in order.  The informative prior used in Appendix 

Figure A5(b) has precision 5 while the informative prior used to produce the results 

shown in Appendix Figure A5(a) has precision 20.  Thus, to reach a conclusion of 

overall treatment effect using aggregate data would require an even more informative 

prior! However, Appendix Figure A5(a) also shows that the results are more sensitive to 

prior 2 as the estimates are pulled towards the prior mean (zero).  Now, when using the 

patient-level data, the point estimates under both priors are similar, but with higher 

precision under prior 2. 

Appendix Figure A6 (see also Appendix Table A30) shows the results from the 

analysis that combines patient-level data sequentially but accounting for covariates, 

under two priors, the same utilized to produce Appendix Figure A5(b), but considering 

the full Bayesian hierarchical model. Here too we can see that under the more 

informative prior we would have concluded overall ICD efficacy after six trials.  

However, under neither prior, we would be able to conclude differential treatment effect 

across subgroups. 

Key points:  In this section we examined the use of patient-level data versus 

aggregate data as information accrues over time.  Our analysis showed that the 
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resulting inferences are not necessarily the same.  Moreover, the analysis of aggregate 

data may be more sensitive to priors. 

Finally, we note that the above analysis which assesses the interactions between 

treatment and covariates defining the subgroups of interest may not be feasible with 

aggregate data (see Pocock et al.2 for a review on issues with published subgroup 

analysis). 

We now further examine the Bayesian hierarchical model that combines patient-level 

data from all eight trials. In what follows we will state a sample of questions of clinical 

interest that we can examine with this model. 

Question 1: Is there evidence that the devices used in the different trials differ in terms 

of their efficacies? 

Answer: As we have discussed before, the Bayesian hierarchical model accounts for 

the variability within and between trials. In particular, we assume that ICD efficacy is 

trial-specific, but allow for the borrowing of information about ICD efficacy across trials.  

Appendix Figure A7 shows the estimates of treatment effect for each trial and the 

overall effect across all trials.  There is evidence that treatment efficacy differs across 

trials. Accounting for these differences, under prior 1 we estimate that the hazard of 

death in the ICD group is exp(-0.43) = 0.65 times the hazard in the control group.  The 

95 percent posterior credible interval is (0.41, 1.03).  Under prior 2 we estimate the 

hazard of death in the ICD group is 0.66 times that in the control group with 95 percent 

posterior credible interval (0.49, 0.90).  That is, under the more informative prior 2, our 

analysis supports the evidence of overall ICD efficacy across all trials. 
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Question 2: Controlling for EF, ischemia, age, and NYHA class, are patients within the 

available trials similar? 

Answer: Another feature of our Bayesian hierarchical model is that it allows for the 

baseline survival functions to vary from trial-to-trial.  Appendix Figure A8 shows the 

estimated posterior baseline survival functions under each trial and overall trials.  Even 

controlling for EF, ischemia, age and NYHA class, the figure indicates that patients’ 

survival differ within the available trials. Patients in the SCDHEFT trial seem to have 

the best survival prognosis. Patients in CABG-PATCH, AVID and MUSTT have poorer 

survival prognosis. 

Question 3: Is there evidence that the ICD has different effects across patient 

subgroups?  

Answer: The Bayesian hierarchical model also allows for trial-specific interactions.  

From our analysis (see Appendix Table A30), there was no evidence for overall 

interactions between treatment and the covariates that define the subgroups of 

interest. In other words, there was no evidence for differential treatment effect across 

prognostic subgroups. 

Methodological and Clinical Implications of Findings 

This case study illustrates Situations 1, 2 and 3 (described under CMS contexts).  

For example, corresponding to Situation 1, in the CASH trial there was no overall 

efficacy of the ICD, but with a naïve analysis one could find efficacy within the subgroup 

with patients < 65 years-old, ≤ 30 percent, NYHA class II and ischemic disease.  

Illustrating Situation 2, the AVID trial supports overall efficacy of the device.  However, 
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concern may be raised in the subgroup of patients with < 65 years-old, ≤ 30 percent, 

NYHA class 3 and ischemic disease, even though the survival comparison within the 

subgroup was not significant. Finally, illustrating Situation 3, some trials do not have all 

subgroups represented. For example, the DEFINITE trial was only on non-ischemic 

patients. 

Regarding Situations 1 and 2, testing for interactions at the individual trials often did 

not support the presence of differential treatment effects.  Combining data from the trials 

improves the power to detect interactions. However, in this case study, the analysis 

that combined data from the trials generally did not support the presence of interactions.  

Such conclusions are supported under different model formulations as well as different 

estimation approaches. In particular, we note that our Bayesian estimation of the 

models that combined data from trials gave similar estimates to those obtained under 

the classical frequentist approaches.  This illustrates that for large studies, Bayesian 

inferences are less sensitive to prior choices. 

Utilizing the full Bayesian hierarchical model, we simulated the survival experience 

of hypothetical patients in a new clinical trial.  This accounts for both, the variation 

between and within clinical trials. Because of the borrowing of information across trials, 

this model allows us to predict survival even if an individual trial does not include some 

of the subgroups (thus, addressing Situation 3).  Using this approach, we note that the 

survival in the registry data is better (relative to those predicted by our model) in early 

years. We note, however, that such analysis has an exploratory feature as confounding 

might be present. We also note that this model could not be estimated using classical 

frequentist approaches. 
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Appendix Figure A1(a): Kaplan-Meier survival curves by treatment group. 
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Appendix Figure A1(b): Kaplan-Meier survival curves by treatment group. (Note that in the SCD-HeFT trial the 

dotted red line corresponds to the “placebo” arm of the trial.) 
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Appendix Figure A2. Log-hazard of treatment effect from Weibull Regression model fit to individual trials with and 

without covariate adjustment. Vertical segments show the limits of the 95% confidence intervals. They are displayed 

in blocks of segments with different colors to differentiate results by trial. Within each block, the full line displays 

results without covariate adjustment; the dotted line displays results utilizing covariate adjustment (note AGE and 

EF are categorized).  
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Appendix Figure A3. Log-hazard of treatment effect from Weibull Regression models that combine data across 

trials with or without adjustment for covariates. Estimates obtained using Weibull Regression Models are shown 

with filled symbols, specifically, filled dots for frequentist estimates and filled squares for Bayesian estimates. 

Vertical segments give the limits of the 95% confidence/credible intervals. They are displayed in blocks of segments 

with different colors to differentiate results by the modeling approaches utilized to combine trials. Within each 

block, the full line displays results without covariate adjustment; the following set utilizes covariate adjustment.   
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Appendix Figure A4(a). Posterior predictive survival distributions under the ICD and control group for hypothetical 

patients with age [65,75), ejection fraction < 30%, NYHA II and ischemic disease and empirical survival 

distribution from corresponding registry patients in the MUSTT registry. 
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Appendix Figure A4(b). Posterior predictive survival distributions under the ICD and control group (for hypothetical 

patients with age 75+, ejection fraction < 30%, NYHA II and ischemic disease and empirical survival distribution 

from corresponding registry patients in the MUSTT registry. 
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Appendix Figure A5(a). Posterior estimates (mean along with 95% posterior credible intervals) using aggregate data 

by number of combined trials. In this figure, each set of four vertical lines corresponds to results under the same 

number of combined trials, but under different models and prior assumptions. Model 1 (dashed lines) refers to a 

fixed-effects formulation, while model 2 (full lines) refers to a random-effects formulation.  Corresponding prior 

densities are shown in the left-hand side of the figure. Prior 1 (red) has precision 1 while prior 2 (blue) has precision 

20.  
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Appendix Figure A5(b). Posterior estimates (mean along with 95% posterior credible intervals) using patient-level 

data by number of combined trials. In this figure, each set of four vertical lines corresponds to results under the same 

number of combined trials, but under different models and prior assumptions. Model 1 (dashed lines) refers to a 

fixed-effects formulation, while model (full line) 2 refers to a random-effects formulation.  Corresponding prior 

densities are shown in the left-hand side of the figure. Prior 1 (red) has precision 1 while prior 2 (blue) has precision 

5. 
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Appendix Figure A6. Posterior estimates (mean along with 95% posterior credible intervals) for the overall 

treatment effect from Bayesian hierarchical models with covariate adjustment and using patient-level data by 

number of combined trials. In this figure, each set of two vertical lines corresponds to results under the same number 

of combined trials, but under different prior assumptions. Corresponding prior densities are shown in the left-hand 

side of the figure. Prior 1 (navy blue) has precision 1 for the model parameters, while prior 2 (brown) has precision 

5. 
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Appendix Figure A7. Posterior estimates (mean along with 95% posterior credible intervals) for the overall 

treatment effect under two priors (prior 2 is more informative than prior 1). 
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Appendix Table A1. Descriptive statistics for prognostic variables stratified by trial and treatment groups – Part 1 (AVID, CABG-PATCH, 
CASH, and DEFINITE)* 
 

Characteristic 
AVID CABG-PATCH CASH DEFINITE 

Control ICD Control ICD Control ICD Control ICD 
Number of Patients 509 507 454 446 189 99 229 229 
Age Mean 

(SD) 
65.33 

(10.19) 
64.83 

(10.82) 
64.95 
(9.39) 

64.07 
(9.21) 

57.83 
(10.59) 

57.46 
(11.18) 

58.11 
(11.96) 

58.41 
(13.84) 

< 65 215 
(42.24%) 

229 
(45.17%) 

227 
(50.00%) 

223 
(50.00%) 

145 
(76.72%) 

72 
(72.73%) 

153 
(66.81%) 

148 
(64.63%) 

[65,75) 203 
(39.88%) 

185 
(36.49%) 

174 
(38.33%) 

168 
(37.67%) 

37 
(19.58%) 

25 
(25.25%) 

63 
(27.51%) 

51 
(22.27%) 

[75,85) 86 
(16.90% 

85 
(16.77%) 

53 
(11.67%) 

55 
(12.33%) 6 (3.17%) 2 (2.02%) 13 

(5.68%) 
30 

(13.10%) 

≥ 85 5 
(00.98%) 8 (1.58%) 0 0 1 (0.53%) 0 0 0 

Ejection Fraction Mean 
(SD) 

30.82 
(13.24) 

32.15 
(13.46) 

27.05 
(5.82) 

27.13 
(5.75) 

45.18 
(17.21) 

45.89 
(19.51) 

21.84 
(6.08) 

20.88 
(5.93) 

≤ 30% 294 
(58.22%) 

273 
(54.17%) 

323 
(71.15%) 

317 
(71.08%) 

35 
(20.47%) 

23 
(24.21%) 

215 
(93.89%) 

219 
(95.63%) 

> 30% 211 
(32.76%) 

231 
(45.83%) 

131 
(28.85%) 

129 
(28.92%) 

136 
(79.53%) 

72 
(75.79%) 

14 
(6.11%) 

10 
(4.37%) 

Ischemic Disease Yes 433 
(85.07%) 

435 
(85.80%) 

454 
(100.00%) 

446 
(100.00%) 

167 
(88.83%) 

88 
(88.89%) 0 0 

No 76 
(14.93%) 

72 
(14.20%) 0 0 21 

(11.17%) 
11 

(11.11%) 
229 

(100.00%) 
229 

(100.00%) 
NYHA Class I 313 

(61.49%) 
329 

(64.89%) 
258 

(56.95%) 
247 

(55.88%) 
54 

(29.35%) 
24 

(24.49%) 
41 

(17.90%) 
58 

(25.33%) 

II 136 
(26.72%) 

144 
(28.40%) 

85 
(18.76%) 

87 
(19.68%) 

106 
(57.61%) 

56 
(57.14%) 

139 
(60.70%) 

124 
(54.15%) 

III 60 
(11.79%) 

34 
(6.71%) 

81 
(17.88%) 

73 
(16.52%) 

24 
(13.04%) 

18 
(18.37%) 

49 
(21.40%) 

47 
(20.52%) 

IV 0 0 29 
(6.40%) 

35 
(7.92%) 0 0 0 0 

* Entries refer to means accompanied by standard deviations for continuous variables, or counts followed by percentages for categorical variables. 
 
 



Appendix Table A1. Descriptive statistics for prognostic variables stratified by trial and treatment groups – Part 2 (MADIT-I, MADIT-II, 
MUSTT, and SCD-HeFT)* 
 

Characteristic 
MADIT-I MADIT-II MUSTT SCD-HeFT 

Control ICD Control ICD Control ICD Control ICD 
Number of Patients 101 95 490 742 353 167 847 829 
Age Mean 

(SD) 63.8 (8.82) 62.12 
(8.73) 

64.57 
(10.32) 

64.45 
(10.45) 

64.87 
(9.65) 

65.42 
(8.52) 

58.58 
(11.92) 

59.41 
(11.87) 

< 65 49 
(48.51%) 

53 
(55.79%) 

228 
(46.53%) 

345 
(46.50%) 

162 
(45.89%) 

72 
(43.11%) 

563 
(66.47%) 

535 
(64.54%) 

[65,75) 40 
(39.60%) 

36 
(37.89%) 

186 
(37.96%) 

269 
(36.25%) 

139 
(39.38%) 

77 
(46.11%) 

216 
(25.50%) 

215 
(25.93%) 

[75,85) 12 
(11.88%) 6 (6.32%) 69 

(14.08%) 
123 

(16.58%) 
50 

(14.16%) 
18 

(10.78%) 
64 

(7.56%) 
76 

(9.17%) 
≥ 85 0 0 7 (1.43%) 5 (0.67%) 2 (0.57%) 0 4 (0.47%) 3 (0.36%) 

Ejection Fraction Mean 
(SD) 

24.57 
(6.67) 

26.66 
(6.50) 

23.16 
(5.49) 

23.17 
(5.42) 

27.65 
(7.64) 

27.72 
(7.91) 

25.71 
(12.51) 

24.96 
(12.76) 

≤ 30% 84 
(83.17%) 

66 
(69.47%) 

488 
(99.59%) 

742 
(100.00%) 

229 
(64.87%) 

109 
(65.27%) 

513 
(60.57%) 

509 
(61.40%) 

> 30% 17 
(16.83%) 

29 
(30.53%) 

2  
(0.41%) 

0 
(0%) 

124 
(35.13%) 

58 
(34.73%) 

334 
(39.43%) 

320 
(38.60%) 

Ischemic Disease Yes 101 
(100.00%) 

95 
(100.00%) 

490 
(100.00%) 

742 
(100.00%) 

353 
(100.00%) 

167 
(100.00%) 

453 
(53.48%) 

431 
(51.99%) 

No 0 0 0 0 0 0 394 
(46.52%) 

398 
(48.01%) 

NYHA Class I 33 
(32.67%) 

36 
(37.89%) 

187 
(38.80%) 

256 
(34.83%) 

71 
(36.41%) 

38 
(34.55%) 0 0 

II 50 
(49.50%) 

44 
(46.32%) 

165 
(34.23%) 

259 
(35.24%) 

75 
(38.46%) 

43 
(39.09%) 

594 
(70.13%) 

566 
(68.28%) 

III 18 
(17.82%) 

15 
(15.79%) 

110 
(22.82%) 

187 
(25.44%) 

49 
(25.13%) 

29 
(29.36%) 

253 
(29.87%) 

263 
(31.72%) 

IV 0 0 20 
(4.15%) 

33 
(4.49%) 0 0 0 0 

 
* Entries refer to means accompanied by standard deviations for continuous variables, or counts followed by percentages for categorical variables. 
 
Abbreviations to Appendix Table A1 – Parts 1 and 2:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery Bypass 
Graft-Patch trial; CASH = Cardiac Arrest Study Hamburg trial; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; ICD = 



 

 
 

 
      

        

        
        

         
         

        
         

         
 

 
  

 
 
 
  

 

Appendix Table A2. Comparison of overall survival by treatment group within each trial, 
unadjusted Cox-Proportional Hazards Model 

Trial 
Sample Size Number of Events Hazard  

Ratio 95% CI P-value Control ICD Control ICD 
AVID 509 507 122 80 0.61 0.46 0.81 < 0.001 
CABG
PATCH 454 446 95 101 1.07 0.81 1.42 0.635 
CASH 189 99 71 37 0.89 0.60 1.32 0.549 
DEFINITE 229 229 40 28 0.65 0.40 1.06 0.08 
MADIT-I 101 95 39 17 0.35 0.19 0.63 < 0.001 
MADIT-II 490 742 105 107 0.65 0.50 0.85 0.002 
MUSTT 353 167 158 35 0.42 0.29 0.60 < 0.001 
SCD-
HeFT 847 829 284 182 0.75 0.62 0.91 0.004 

Abbreviations:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery 
Bypass Graft-Patch trial; CASH = Cardiac Arrest Study Hamburg trial; CI = confidence interval; DEFINITE = 
Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; ICD = implantable cardioverter defibrillator; 
MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter Automatic Defibrillator 
Implantation Trial-II; MUSTT = Multicenter Unsustained Tachycardiac Trial; SCD-HeFT = Sudden Cardiac Death in 
Heart Failure Trial 
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Appendix Table A3. Comparison of overall survival by treatment group within each trial, stratified analysis* 

Sub
groups Age EF NYHA 

Isch/ 
Non-Isch AVID 

CABG
PATCH CASH DEFINITE MADIT-I MADIT-II MUSTT 

SCD-
HeFT 

1 < 65 ≤ 30% 1 NonIsch 0.22 - - 0.54 - - - -
2 < 65 ≤ 30% 1 Isch 0.40 0.19 0.32 - 0.12 0.36 0.74 -
3 < 65 ≤ 30% 2 NonIsch 0.80 - 0.48 0.73 - - - 0.25 
4 < 65 ≤ 30% 2 Isch 0.38 0.64 0.00 - 0.26 0.13 0.03 0.00 
5 < 65 ≤ 30% 3 NonIsch 0.07 - 0.23 0.31 - - - 0.91 
6 < 65 ≤ 30% 3 Isch 0.30 0.80 0.09 - 0.34 0.63 0.88 0.26 
7 < 65 ≤ 30% 4 NonIsch - - - - - - - -
8 < 65 ≤ 30% 4 Isch - 0.39 - - - 0.43 - -
9 < 65 > 30% 1 NonIsch 1.00 - 0.71 0.48 - - - -
10 < 65 > 30% 1 Isch 0.97 0.79 0.34 - 1.00 - 0.62 -
11 < 65 > 30% 2 NonIsch 0.86 - 0.62 1.00 - - - 0.94 
12 < 65 > 30% 2 Isch 0.86 0.41 0.74 - 0.07 - 0.03 0.70 
13 < 65 > 30% 3 NonIsch - - - 0.16 - - - 0.12 
14 < 65 > 30% 3 Isch 0.32 0.90 0.69 - - - 0.54 0.28 
15 < 65 > 30% 4 NonIsch - - - - - - - -
16 < 65 > 30% 4 Isch - 0.56  - - - - - -
17 [65,75) ≤ 30% 1 NonIsch 0.14 - - 0.35 - - - -
18 [65,75) ≤ 30% 1 Isch 0.34 0.96 - - 0.51 0.06 0.52 -
19 [65,75) ≤ 30% 2 NonIsch 0.48 - - 0.76 - - - 0.55 
20 [65,75) ≤ 30% 2 Isch 0.09 0.39 0.32 - 0.12 0.76 0.14 0.32 
21 [65,75) ≤ 30% 3 NonIsch 1.00 - - 0.46 - - - 0.78 
22 [65,75) ≤ 30% 3 Isch 0.29 0.58 0.95 - 0.08 0.00 0.00 0.34 
23 [65,75) ≤ 30% 4 NonIsch - - - - - - - -
24 [65,75) ≤ 30% 4 Isch - 0.15 - - - 0.72 - -
25 [65,75) > 30% 1 NonIsch 0.12 - - - - - - -
26 [65,75) > 30% 1 Isch 0.67 0.99 1.00 - 1.00 - 0.74 -
27 [65,75) > 30% 2 NonIsch - - - 1.00 - - - 0.75 

* Entries have p-values for the log-rank test (unadjusted for multiple testing) comparing survival by treatment in the subgroups of interest.  Missing entries indicate 
unavailable data for the particular subgroup.  P-values in red indicate significant results at the unadjusted significance level of 5%. 
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Appendix Table A3. Comparison of overall survival by treatment group within each trial, stratified analysis* – continued 

Sub
groups Age EF NYHA 

Isch/ 
Non-Isch AVID 

CABG
PATCH CASH DEFINITE MADIT-I MADIT-II MUSTT 

SCD-
HeFT 

28 [65,75) > 30% 2 Isch 0.50 0.54 0.25 - - - 0.20 0.00 
29 [65,75) > 30% 3 NonIsch 0.16 - - - - - - 0.11 
30 [65,75) > 30% 3 Isch 0.48 0.23 0.29 - 0.32 - 0.34 0.09 
31 [65,75) > 30% 4 NonIsch - - - - - - - -
32 [65,75) > 30% 4 Isch - 0.48  - - - - - -
33 ≥ 75 ≤ 30% 1 NonIsch 1.00 - - 0.06 - - - -
34 ≥ 75 ≤ 30% 1 Isch 0.89 0.30 - - - 0.55 0.14 -
35 ≥ 75 ≤ 30% 2 NonIsch 0.59 - - 0.85 - - - 0.15 
36 ≥ 75 ≤ 30% 2 Isch 0.95 0.48 - - 0.53 0.03 0.90 0.03 
37 ≥ 75 ≤ 30% 3 NonIsch - - - 0.02 - - - 0.18  
38 ≥ 75 ≤ 30% 3 Isch 0.67 0.80 - - - 0.21 0.12 0.79 
39 ≥ 75 ≤ 30% 4 NonIsch - - - - - - - -
40 ≥ 75 ≤ 30% 4 Isch - 1.00 - - - 0.39 - -
41 ≥ 75 > 30% 1 NonIsch 0.16 - - - - - - -
42 ≥ 75 > 30% 1 Isch 0.73 0.38 - - 1.00 - - -
43 ≥ 75 > 30% 2 NonIsch - - - - - - - 0.38  
44 ≥ 75 > 30% 2 Isch 0.95 0.32 0.88 - - - 0.28 0.72 
45 ≥ 75 > 30% 3 NonIsch - - - - - - - 1.00  
46 ≥ 75 > 30% 3 Isch 0.32 - - - - - 0.18 0.08 
47 ≥ 75 > 30% 4 NonIsch - - - - - - - -
48 ≥ 75 > 30% 4 Isch - - - - - - - -

* Entries have p-values for the log-rank test (unadjusted for multiple testing) comparing survival by treatment in the subgroups of interest.  Missing entries indicate 
unavailable data for the particular subgroup.  P-values in red indicate significant results at the unadjusted significance level of 5%. 

Abbreviations for Appendix Table A3:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery Bypass Graft-Patch trial; 
CASH = Cardiac Arrest Study Hamburg trial; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; EF = ejection fraction; Isch = 
ischemic; MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter Automatic Defibrillator Implantation Trial-II; MUSTT = 
Multicenter Unsustained Tachycardiac Trial; NonIsch = non-ischemic; NYHA = New York Heart Association; SCD-HeFT = Sudden Cardiac Death in Heart Failure 
Trial 
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Appendix Table A4. Comparison of overall survival by treatment group within each trial, stratified analysis, subgroup composition by 
trial and treatment group – Part 1 (AVID and CABG-PATCH) 

Sub
groups Age EF NYHA 

Isch/ 
Non-
Isch 

AVID CABG-PATCH 
Control ICD Control ICD 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

1 < 65 ≤ 30% 1 NonIsch 16 6 8 1 0 0 0 0 
2 < 65 ≤ 30% 1 Isch 38 7 62 8 84 13 83 7 
3 < 65 ≤ 30% 2 NonIsch 9 1 14 1 0 0 0 0 
4 < 65 ≤ 30% 2 Isch 31 11 28 5 35 7 34 8 
5 < 65 ≤ 30% 3 NonIsch 9 0 4 2 0 0 0 0 
6 < 65 ≤ 30% 3 Isch 15 10 8 3 28 5 24 6 
7 < 65 ≤ 30% 4 NonIsch 0 0 0 0 0 0 0 0 
8 < 65 ≤ 30% 4 Isch 0 0 0 0 8 4 12 3 
9 < 65 > 30% 1 NonIsch 7 0 5 0 0 0 0 0 
10 < 65 > 30% 1 Isch 72 4 78 5 47 4 43 3 
11 < 65 > 30% 2 NonIsch 5 2 5 1 0 0 0 0 
12 < 65 > 30% 2 Isch 11 1 13 2 12 1 8 0 
13 < 65 > 30% 3 NonIsch 0 0 1 0 0 0 0 0 
14 < 65 > 30% 3 Isch 2 1 2 0 10 3 11 3 
15 < 65 > 30% 4 NonIsch 0 0 0 0 0 0 0 0 
16 < 65 > 30% 4 Isch 0 0 0 0 2 0 6 1 
17 [65,75) ≤ 30% 1 NonIsch 10 2 10 0 0 0 0 0 
18 [65,75) ≤ 30% 1 Isch 56 13 53 8 74 16 57 12 
19 [65,75) ≤ 30% 2 NonIsch 5 0 7 1 0 0 0 0 
20 [65,75) ≤ 30% 2 Isch 31 11 24 4 21 6 30 13 
21 [65,75) ≤ 30% 3 NonIsch 3 0 1 1 0 0 0 0 
22 [65,75) ≤ 30% 3 Isch 16 7 5 1 23 9 21 11 
23 [65,75) ≤ 30% 4 NonIsch 0 0 0 0 0 0 0 0 
24 [65,75) ≤ 30% 4 Isch 0 0 0 0 10 0 12 3 
25 [65,75) > 30% 1 NonIsch 3 2 3 0 0 0 0 0 
26 [65,75) > 30% 1 Isch 52 11 52 9 28 5 31 6 
27 [65,75) > 30% 2 NonIsch 0 0 4 0 0 0 0 0 
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Appendix Table A4. Comparison of overall survival by treatment group within each trial, stratified analysis, subgroup composition by 
trial and treatment group – Part 1 (AVID and CABG-PATCH) – continued 

Sub
groups Age EF NYHA 

Isch/ 
Non-
Isch 

AVID CABG-PATCH 
Control ICD Control ICD 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

28 [65,75) > 30% 2 Isch 19 4 21 3 8 2 7 1 
29 [65,75) > 30% 3 NonIsch 2 0 1 1 0 0 0 0 
30 [65,75) > 30% 3 Isch 2 1 3 0 5 3 4 1 
31 [65,75) > 30% 4 NonIsch 0 0 0 0 0 0 0 0 
32 [65,75) > 30% 4 Isch 0 0 0 0 5 3 4 2 
33 ≥ 75 ≤ 30% 1 NonIsch 1 0 1 0 0 0 0 0 
34 ≥ 75 ≤ 30% 1 Isch 27 7 23 5 12 2 21 7 
35 ≥ 75 ≤ 30% 2 NonIsch 2 1 4 1 0 0 0 0 
36 ≥ 75 ≤ 30% 2 Isch 17 9 14 6 8 1 7 4 
37 ≥ 75 ≤ 30% 3 NonIsch 0 0 3 1 0 0 0 0 
38 ≥ 75 ≤ 30% 3 Isch 8 3 4 1 15 7 12 7 
39 ≥ 75 ≤ 30% 4 NonIsch 0 0 0 0 0 0 0 0 
40 ≥ 75 ≤ 30% 4 Isch 0 0 0 0 4 1 1 0 
41 ≥ 75 > 30% 1 NonIsch 2 0 1 1 0 0 0 0 
42 ≥ 75 > 30% 1 Isch 25 4 30 6 13 3 12 1 
43 ≥ 75 > 30% 2 NonIsch 1 0 0 0 0 0 0 0 
44 ≥ 75 > 30% 2 Isch 5 1 10 2 1 0 1 1 
45 ≥ 75 > 30% 3 NonIsch 1 1 0 0 0 0 0 0 
46 ≥ 75 > 30% 3 Isch 2 1 2 0 0 0 1 1 
47 ≥ 75 > 30% 4 NonIsch 0 0 0 0 0 0 0 0 
48 ≥ 75 > 30% 4 Isch 0 0 0 0 0 0 0 0 
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Appendix Table A4. Comparison of overall survival by treatment group within each trial, stratified analysis, subgroup composition by 
trial and treatment group – Part 2 (CASH and DEFINITE) 

Sub
groups Age EF NYHA 

Isch/ 
Non-
Isch 

CASH DEFINITE 
Control ICD Control ICD 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

1 < 65 ≤ 30% 1 NonIsch 0 0 0 0 29 3 34 2 
2 < 65 ≤ 30% 1 Isch 3 1 1 1 0 0 0 0 
3 < 65 ≤ 30% 2 NonIsch 1 0 2 1 89 10 78 8 
4 < 65 ≤ 30% 2 Isch 16 11 9 2 0 0 0 0 
5 < 65 ≤ 30% 3 NonIsch 2 2 1 0 24 5 29 3 
6 < 65 ≤ 30% 3 Isch 5 2 5 4 0 0 0 0 
7 < 65 ≤ 30% 4 NonIsch 0 0 0 0 0 0 0 0 
8 < 65 ≤ 30% 4 Isch 0 0 0 0 0 0 0 0 
9 < 65 > 30% 1 NonIsch 7 3 1 0 1 0 3 1 
10 < 65 > 30% 1 Isch 39 6 17 1 0 0 0 0 
11 < 65 > 30% 2 NonIsch 5 1 4 1 8 0 2 0 
12 < 65 > 30% 2 Isch 45 13 26 7 0 0 0 0 
13 < 65 > 30% 3 NonIsch 1 1 0 0 2 1 2 0 
14 < 65 > 30% 3 Isch 4 2 5 4 0 0 0 0 
15 < 65 > 30% 4 NonIsch 0 0 0 0 0 0 0 0 
16 < 65 > 30% 4 Isch 0 0 0 0 0 0 0 0 
17 [65,75) ≤ 30% 1 NonIsch 0 0 0 0 8 3 10 1 
18 [65,75) ≤ 30% 1 Isch 0 0 0 0 0 0 0 0 
19 [65,75) ≤ 30% 2 NonIsch 0 0 0 0 34 4 30 4 
20 [65,75) ≤ 30% 2 Isch 3 2 4 3 0 0 0 0 
21 [65,75) ≤ 30% 3 NonIsch 0 0 0 0 18 7 9 3 
22 [65,75) ≤ 30% 3 Isch 4 3 1 1 0 0 0 0 
23 [65,75) ≤ 30% 4 NonIsch 0 0 0 0 0 0 0 0 
24 [65,75) ≤ 30% 4 Isch 0 0 0 0 0 0 0 0 
25 [65,75) > 30% 1 NonIsch 0 0 0 0 1 1 0 0 
26 [65,75) > 30% 1 Isch 1 0 5 0 0 0 0 0 
27 [65,75) > 30% 2 NonIsch 0 0 1 1 1 0 2 0 
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Appendix Table A4. Comparison of overall survival by treatment group within each trial, stratified analysis, subgroup composition by 
trial and treatment group – Part 2 (CASH and DEFINITE) – continued 

Sub
groups Age EF NYHA 

Isch/ 
Non-
Isch 

CASH DEFINITE 
Control ICD Control ICD 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

28 [65,75) > 30% 2 Isch 19 8 5 3 0 0 0 0 
29 [65,75) > 30% 3 NonIsch 1 1 0 0 1 0 0 0 
30 [65,75) > 30% 3 Isch 5 5 6 5 0 0 0 0 
31 [65,75) > 30% 4 NonIsch 0 0 0 0 0 0 0 0 
32 [65,75) > 30% 4 Isch 0 0 0 0 0 0 0 0 
33 ≥ 75 ≤ 30% 1 NonIsch 0 0 0 0 2 2 11 3 
34 ≥ 75 ≤ 30% 1 Isch 0 0 0 0 0 0 0 0 
35 ≥ 75 ≤ 30% 2 NonIsch 0 0 0 0 7 1 11 2 
36 ≥ 75 ≤ 30% 2 Isch 0 0 0 0 0 0 0 0 
37 ≥ 75 ≤ 30% 3 NonIsch 0 0 0 0 4 3 7 1 
38 ≥ 75 ≤ 30% 3 Isch 1 1 0 0 0 0 0 0 
39 ≥ 75 ≤ 30% 4 NonIsch 0 0 0 0 0 0 0 0 
40 ≥ 75 ≤ 30% 4 Isch 0 0 0 0 0 0 0 0 
41 ≥ 75 > 30% 1 NonIsch 0 0 0 0 0 0 0 0 
42 ≥ 75 > 30% 1 Isch 0 0 0 0 0 0 0 0 
43 ≥ 75 > 30% 2 NonIsch 0 0 0 0 0 0 1 0 
44 ≥ 75 > 30% 2 Isch 5 2 2 1 0 0 0 0 
45 ≥ 75 > 30% 3 NonIsch 0 0 0 0 0 0 0 0 
46 ≥ 75 > 30% 3 Isch 1 1 0 0 0 0 0 0 
47 ≥ 75 > 30% 4 NonIsch 0 0 0 0 0 0 0 0 
48 ≥ 75 > 30% 4 Isch 0 0 0 0 0 0 0 0 
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Appendix Table A4. Comparison of overall survival by treatment group within each trial, stratified analysis, subgroup composition by 
trial and treatment group – Part 3 (MADIT-I and MADIT-II) 

Sub
groups Age EF NYHA 

Isch/ 
Non-
Isch 

MADIT-I MADIT-II 
Control ICD Control ICD 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

1 < 65 ≤ 30% 1 NonIsch 0 0 0 0 0 0 0 0 
2 < 65 ≤ 30% 1 Isch 14 3 12 0 91 10 124 9 
3 < 65 ≤ 30% 2 NonIsch 0 0 0 0 0 0 0 0 
4 < 65 ≤ 30% 2 Isch 21 8 15 3 81 10 115 8 
5 < 65 ≤ 30% 3 NonIsch 0 0 0 0 0 0 0 0 
6 < 65 ≤ 30% 3 Isch 9 5 7 2 44 8 87 13 
7 < 65 ≤ 30% 4 NonIsch 0 0 0 0 0 0 0 0 
8 < 65 ≤ 30% 4 Isch 0 0 0 0 8 2 15 5 
9 < 65 > 30% 1 NonIsch 0 0 0 0 0 0 0 0 
10 < 65 > 30% 1 Isch 2 0 11 0 1 0 0 0 
11 < 65 > 30% 2 NonIsch 0 0 0 0 0 0 0 0 
12 < 65 > 30% 2 Isch 3 2 7 1 0 0 0 0 
13 < 65 > 30% 3 NonIsch 0 0 0 0 0 0 0 0 
14 < 65 > 30% 3 Isch 0 0 1 1 0 0 0 0 
15 < 65 > 30% 4 NonIsch 0 0 0 0 0 0 0 0 
16 < 65 > 30% 4 Isch 0 0 0 0 0 0 0 0 
17 [65,75) ≤ 30% 1 NonIsch 0 0 0 0 0 0 0 0 
18 [65,75) ≤ 30% 1 Isch 7 2 7 1 67 15 86 11 
19 [65,75) ≤ 30% 2 NonIsch 0 0 0 0 0 0 0 0 
20 [65,75) ≤ 30% 2 Isch 16 7 17 6 60 11 107 17 
21 [65,75) ≤ 30% 3 NonIsch 0 0 0 0 0 0 0 0 
22 [65,75) ≤ 30% 3 Isch 6 4 6 3 46 19 62 8 
23 [65,75) ≤ 30% 4 NonIsch 0 0 0 0 0 0 0 0 
24 [65,75) ≤ 30% 4 Isch 0 0 0 0 10 4 12 5 
25 [65,75) > 30% 1 NonIsch 0 0 0 0 0 0 0 0 
26 [65,75) > 30% 1 Isch 5 0 5 0 0 0 0 0 
27 [65,75) > 30% 2 NonIsch 0 0 0 0 0 0 0 0 
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Appendix Table A4. Comparison of overall survival by treatment group within each trial, stratified analysis, subgroup composition by 
trial and treatment group – Part 3 (MADIT-I and MADIT-II) – continued  

Sub
groups Age EF NYHA 

Isch/ 
Non-
Isch 

MADIT-I MADIT-II 
Control ICD Control ICD 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

28 [65,75) > 30% 2 Isch 5 1 0 0 0 0 0 0 
29 [65,75) > 30% 3 NonIsch 0 0 0 0 0 0 0 0 
30 [65,75) > 30% 3 Isch 1 1 1 0 0 0 0 0 
31 [65,75) > 30% 4 NonIsch 0 0 0 0 0 0 0 0 
32 [65,75) > 30% 4 Isch 0 0 0 0 0 0 0 0 
33 ≥ 75 ≤ 30% 1 NonIsch 0 0 0 0 0 0 0 0 
34 ≥ 75 ≤ 30% 1 Isch 4 3 0 0 28 7 46 9 
35 ≥ 75 ≤ 30% 2 NonIsch 0 0 0 0 0 0 0 0 
36 ≥ 75 ≤ 30% 2 Isch 5 1 2 0 23 7 37 3 
37 ≥ 75 ≤ 30% 3 NonIsch 0 0 0 0 0 0 0 0 
38 ≥ 75 ≤ 30% 3 Isch 2 2 0 0 20 10 38 16 
39 ≥ 75 ≤ 30% 4 NonIsch 0 0 0 0 0 0 0 0 
40 ≥ 75 ≤ 30% 4 Isch 0 0 0 0 2 0 6 3 
41 ≥ 75 > 30% 1 NonIsch 0 0 0 0 0 0 0 0 
42 ≥ 75 > 30% 1 Isch 1 0 1 0 0 0 0 0 
43 ≥ 75 > 30% 2 NonIsch 0 0 0 0 0 0 0 0 
44 ≥ 75 > 30% 2 Isch 0 0 3 0 1 1 0 0 
45 ≥ 75 > 30% 3 NonIsch 0 0 0 0 0 0 0 0 
46 ≥ 75 > 30% 3 Isch 0 0 0 0 0 0 0 0 
47 ≥ 75 > 30% 4 NonIsch 0 0 0 0 0 0 0 0 
48 ≥ 75 > 30% 4 Isch 0 0 0 0 0 0 0 0 
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Appendix Table A4. Comparison of overall survival by treatment group within each trial, stratified analysis, subgroup composition by 
trial and treatment group – Part 4 (MUSTT and SCD-HeFT) 

Sub
groups Age EF NYHA 

Isch/ 
Non-
Isch 

MUSTT SCD-HeFT 
Control ICD Control ICD 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

1 < 65 ≤ 30% 1 NonIsch 0 0 0 0 0 0 0 0 
2 < 65 ≤ 30% 1 Isch 17 5 13 3 0 0 0 0 
3 < 65 ≤ 30% 2 NonIsch 0 0 0 0 141 22 133 14 
4 < 65 ≤ 30% 2 Isch 24 13 10 1 98 36 91 13 
5 < 65 ≤ 30% 3 NonIsch 0 0 0 0 57 14 48 12 
6 < 65 ≤ 30% 3 Isch 15 9 10 5 55 29 47 18 
7 < 65 ≤ 30% 4 NonIsch 0 0 0 0 0 0 0 0 
8 < 65 ≤ 30% 4 Isch 0 0 0 0 0 0 0 0 
9 < 65 > 30% 1 NonIsch 0 0 0 0 0 0 0 0 
10 < 65 > 30% 1 Isch 12 1 7 1 0 0 0 0 
11 < 65 > 30% 2 NonIsch 0 0 0 0 76 7 87 8 
12 < 65 > 30% 2 Isch 8 4 7 0 78 14 74 12 
13 < 65 > 30% 3 NonIsch 0 0 0 0 20 4 27 1 
14 < 65 > 30% 3 Isch 4 2 3 1 38 11 28 10 
15 < 65 > 30% 4 NonIsch 0 0 0 0 0 0 0 0 
16 < 65 > 30% 4 Isch 0 0 0 0 0 0 0 0 
17 [65,75) ≤ 30% 1 NonIsch 0 0 0 0 0 0 0 0 
18 [65,75) ≤ 30% 1 Isch 18 7 8 2 0 0 0 0 
19 [65,75) ≤ 30% 2 NonIsch 0 0 0 0 35 10 41 9 
20 [65,75) ≤ 30% 2 Isch 18 8 14 3 49 19 53 15 
21 [65,75) ≤ 30% 3 NonIsch 0 0 0 0 16 10 22 11 
22 [65,75) ≤ 30% 3 Isch 13 11 8 2 20 12 30 23 
23 [65,75) ≤ 30% 4 NonIsch 0 0 0 0 0 0 0 0 
24 [65,75) ≤ 30% 4 Isch 0 0 0 0 0 0 0 0 
25 [65,75) > 30% 1 NonIsch 0 0 0 0 0 0 0 0 
26 [65,75) > 30% 1 Isch 12 1 8 1 0 0 0 0 
27 [65,75) > 30% 2 NonIsch 0 0 0 0 20 5 12 3 
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Appendix Table A4. Comparison of overall survival by treatment group within each trial, stratified analysis, subgroup composition by 
trial and treatment group – Part 4 (MUSTT and SCD-HeFT) – continued 

Sub
groups Age EF NYHA 

Isch/ 
Non-
Isch 

MUSTT SCD-HeFT 
Control ICD Control ICD 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

#Sub
jects #Events 

28 [65,75) > 30% 2 Isch 11 3 7 0 48 17 34 1 
29 [65,75) > 30% 3 NonIsch 0 0 0 0 9 0 6 1 
30 [65,75) > 30% 3 Isch 5 2 2 0 19 5 17 10 
31 [65,75) > 30% 4 NonIsch 0 0 0 0 0 0 0 0 
32 [65,75) > 30% 4 Isch 0 0 0 0 0 0 0 0 
33 ≥ 75 ≤ 30% 1 NonIsch 0 0 0 0 0 0 0 0 
34 ≥ 75 ≤ 30% 1 Isch 9 2 2 1 0 0 0 0 
35 ≥ 75 ≤ 30% 2 NonIsch 0 0 0 0 11 6 7 1 
36 ≥ 75 ≤ 30% 2 Isch 6 2 4 1 18 8 12 2 
37 ≥ 75 ≤ 30% 3 NonIsch 0 0 0 0 1 1 6 1 
38 ≥ 75 ≤ 30% 3 Isch 9 5 5 0 12 7 19 9 
39 ≥ 75 ≤ 30% 4 NonIsch 0 0 0 0 0 0 0 0 
40 ≥ 75 ≤ 30% 4 Isch 0 0 0 0 0 0 0 0 
41 ≥ 75 > 30% 1 NonIsch 0 0 0 0 0 0 0 0 
42 ≥ 75 > 30% 1 Isch 3 1 0 0 0 0 0 0 
43 ≥ 75 > 30% 2 NonIsch 0 0 0 0 6 4 3 1 
44 ≥ 75 > 30% 2 Isch 8 3 1 1 14 3 19 3 
45 ≥ 75 > 30% 3 NonIsch 0 0 0 0 2 0 6 0 
46 ≥ 75 > 30% 3 Isch 3 3 1 0 4 0 7 4 
47 ≥ 75 > 30% 4 NonIsch 0 0 0 0 0 0 0 0 
48 ≥ 75 > 30% 4 Isch 0 0 0 0 0 0 0 0 

Abbreviations for Appendix Table A4 – Parts 1-4:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery Bypass Graft-
Patch trial; CASH = Cardiac Arrest Study Hamburg trial; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; EF = ejection 
fraction; ICD = implantable cardioverter defibrillator; Isch = ischemic; MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter 
Automatic Defibrillator Implantation Trial-II; MUSTT = Multicenter Unsustained Tachycardiac Trial; NonIsch = non-ischemic; NYHA = New York Heart Association; 
SCD-HeFT = Sudden Cardiac Death in Heart Failure Trial 

A-195
 
 




 

 
 
  

   
  

   
   

  

   
  

  
 

   

 

 

 

Appendix Table A5. Comparison of overall survival by treatment group adjusted by baseline 
prognostic variables using the Weibull regression model. Estimates from Weibull regression 
models fit to the AVID trial. 

Parameter 
Model with Main Effects Only Model with Interactions 
Estimate SE P-value Estimate SE P-value 

TRT -0.43 0.15 0.00 -0.36 0.49 0.46 
AGE [65,75) 0.30 0.17 0.07 0.32 0.21 0.13 
AGE ≥ 75 0.64 0.19 0.00 0.46 0.25 0.06 
EF > 30% -0.51 0.16 0.00 -0.62 0.21 0.00 
NYHA II 0.47 0.16 0.00 0.54 0.21 0.01 
NYHA III 0.98 0.21 0.00 1.02 0.25 0.00 
NYHA IV  - - - - - -
ISCH 0.31 0.22 0.14 0.37 0.28 0.19 
TRT*AGE [65,75) - - - -0.05 0.34 0.89 
TRT*AGE ≥ 75 - - - 0.44 0.38 0.25 
TRT*EF > 30% - - - 0.24 0.32 0.45 
TRT*NYHA II - - - -0.21 0.33 0.53 
TRT*NYHA III - - - -0.19 0.44 0.67 
TRT*NYHA IV  - - - - - -
TRT*ISCH - - - -0.17 0.44 0.69 

Abbreviations:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; EF = ejection fraction; ISCH = 
ischemic; NYHA = New York Heart Association; SE = standard error; TRT = treatment 
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Appendix Table A6. Comparison of overall survival by treatment group adjusted by baseline 
prognostic variables using the Weibull regression model. Estimates from Weibull regression 
models fit to the CABG-PATCH trial. 

Parameter 
Model with Main Effects Only Model with Interactions 
Estimate SE P-value Estimate SE P-value 

TRT 0.09 0.14 0.53 -0.27 0.32 0.40 
AGE [65,75) 0.64 0.16 0.00 0.49 0.23 0.03 
AGE ≥ 75 0.71 0.21 0.00 0.38 0.32 0.23 
EF > 30% -0.25 0.17 0.16 -0.08 0.24 0.75 
NYHA II 0.55 0.19 0.00 0.25 0.29 0.39 
NYHA III 0.93 0.18 0.00 0.87 0.25 0.00 
NYHA IV 0.53 0.27 0.05 0.49 0.39 0.21 
ISCH  - - - - - -
TRT*AGE [65,75) - - - 0.31 0.32 0.34 
TRT*AGE ≥ 75 - - - 0.63 0.43 0.14 
TRT*EF > 30% - - - -0.33 0.35 0.35 
TRT*NYHA II - - - 0.54 0.39 0.16 
TRT*NYHA III - - - 0.15 0.36 0.67 
TRT*NYHA IV - - - 0.15 0.54 0.78 
TRT*ISCH  - - - - - -

Abbreviations:  CABG-PATCH = Coronary Artery Bypass Graft-Patch trial; EF = ejection fraction; ISCH = ischemic; 
NYHA = New York Heart Association; SE = standard error; TRT = treatment 
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Appendix Table A7. Comparison of overall survival by treatment group adjusted by baseline 
prognostic variables using the Weibull regression model. Estimates from Weibull regression 
models fit to the CASH trial. 

Parameter 
Model with Main Effects Only Model with Interactions 
Estimate SE P-value Estimate SE P-value 

TRT -0.13 0.21 0.55 -3.21 1.17 0.01 
AGE [65,75) 0.64 0.23 0.00 0.48 0.30 0.10 
AGE ≥ 75 0.88 0.48 0.07 1.11 0.55 0.04 
EF > 30% -0.16 0.25 0.51 -0.64 0.33 0.05 
NYHA II 0.70 0.33 0.03 0.58 0.38 0.13 
NYHA III 1.74 0.38 0.00 1.08 0.48 0.02 
NYHA IV  - - - - - -
ISCH -0.23 0.33 0.49 -0.74 0.39 0.06 
TRT*AGE [65,75) - - - 0.77 0.47 0.10 
TRT*AGE ≥ 75 - - - -0.50 1.18 0.67 
TRT*EF > 30% - - - 1.06 0.50 0.04 
TRT*NYHA II - - - 0.97 0.84 0.25 
TRT*NYHA III - - - 2.06 0.92 0.03 
TRT*NYHA IV  - - - - - -
TRT*ISCH - - - 1.06 0.73 0.15 

Abbreviations:  CASH = Cardiac Arrest Study Hamburg trial; EF = ejection fraction; ISCH = ischemic; NYHA = New 
York Heart Association; SE = standard error; TRT = treatment 
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Appendix Table A8. Comparison of overall survival by treatment group adjusted by baseline 
prognostic variables using the Weibull regression model. Estimates from Weibull regression 
models fit to the DEFINITE trial. 

Parameter 
Model with Main Effects Only Model with Interactions 
Estimate SE P-value Estimate SE P-value 

TRT -0.58 0.26 0.03 -0.62 0.56 0.26 
AGE [65,75) 0.43 0.28 0.12 0.38 0.35 0.28 
AGE ≥ 75 1.16 0.35 0.00 1.68 0.48 0.00 
EF > 30% -0.08 0.59 0.89 0.06 0.73 0.93 
NYHA II -0.22 0.32 0.50 -0.54 0.42 0.20 
NYHA III 0.60 0.33 0.07 0.74 0.42 0.08 
NYHA IV  - - - - - -
ISCH  - - - - - -
TRT*AGE [65,75) - - - 0.09 0.57 0.88 
TRT*AGE ≥ 75 - - - -0.82 0.68 0.23 
TRT*EF > 30% - - - -0.30 1.26 0.81 
TRT*NYHA II - - - 0.71 0.63 0.26 
TRT*NYHA III - - - -0.41 0.68 0.55 
TRT*NYHA IV  - - - - - -
TRT*ISCH  - - - - - -

Abbreviations:  DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; EF = ejection 
fraction; ISCH = ischemic; NYHA = New York Heart Association; SE = standard error; TRT = treatment 
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Appendix Table A9. Comparison of overall survival by treatment group adjusted by baseline 
prognostic variables using the Weibull regression model. Estimates from Weibull regression 
models fit to the MADIT-I trial. 

Parameter 
Model with Main Effects Only Model with Interactions 
Estimate SE P-value Estimate SE P-value 

TRT -0.87 0.30 0.00 -2.19 1.16 0.06 
AGE [65,75) 0.61 0.29 0.04 0.59 0.38 0.11 
AGE ≥ 75 0.71 0.46 0.13 0.81 0.48 0.09 
EF > 30% -0.67 0.45 0.13 -0.59 0.57 0.30 
NYHA II 0.56 0.39 0.15 0.22 0.43 0.60 
NYHA III 1.48 0.42 0.00 1.26 0.47 0.01 
NYHA IV  - - - - - -
ISCH  - - - - - -
TRT*AGE [65,75) - - - 0.02 0.63 0.97 
TRT*AGE ≥ 75 - - - -12.79 647.85 0.98 
TRT*EF > 30% - - - 0.21 0.97 0.83 
TRT*NYHA II - - - 1.67 1.16 0.15 
TRT*NYHA III - - - 1.29 1.20 0.29 
TRT*NYHA IV  - - - - - -
TRT*ISCH  - - - - - -

Abbreviations:  EF = ejection fraction; ISCH = ischemic; MADIT-I = Multicenter Automatic Defibrillator Implantation 
Trial-I; NYHA = New York Heart Association; SE = standard error; TRT = treatment 
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Appendix Table A10. Comparison of overall survival by treatment group adjusted by baseline 
prognostic variables using the Weibull regression model. Estimates from Weibull regression 
models fit to the MADIT-II trial. 

Parameter 
Model with Main Effects Only Model with Interactions 
Estimate SE P-value Estimate SE P-value 

TRT -0.47 0.14 0.00 -0.28 0.33 0.39 
AGE [65,75) 0.63 0.16 0.00 0.77 0.23 0.00 
AGE ≥ 75 1.12 0.18 0.00 1.22 0.27 0.00 
EF > 30% 0.75 1.01 0.46 0.74 1.02 0.47 
NYHA II 0.02 0.19 0.91 0.05 0.26 0.85 
NYHA III 0.74 0.17 0.00 0.85 0.24 0.00 
NYHA IV 1.02 0.26 0.00 0.50 0.45 0.26 
ISCH  - - - - - -
TRT*AGE [65,75) - - - -0.29 0.33 0.37 
TRT*AGE ≥ 75 - - - -0.20 0.37 0.59 
TRT*EF > 30% - - -
TRT*NYHA II - - - -0.06 0.37 0.88 
TRT*NYHA III - - - -0.22 0.35 0.54 
TRT*NYHA IV - - - 0.91 0.56 0.10 
TRT*ISCH  - - - - - -

Abbreviations:  EF = ejection fraction; ISCH = ischemic; MADIT-II = Multicenter Automatic Defibrillator Implantation 
Trial-II; NYHA = New York Heart Association; SE = standard error; TRT = treatment 
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Appendix Table A11. Comparison of overall survival by treatment group adjusted by baseline 
prognostic variables using the Weibull regression model. Estimates from Weibull regression 
models fit to the MUSTT trial. 

Parameter 
Model with Main Effects Only Model with Interactions 
Estimate SE P-value Estimate SE P-value 

TRT -0.97 0.24 0.00 0.05 0.50 0.93 
AGE [65,75) 0.07 0.22 0.75 0.17 0.25 0.49 
AGE ≥ 75 -0.10 0.28 0.71 -0.07 0.30 0.83 
EF > 30% -0.57 0.24 0.02 -0.54 0.26 0.04 
NYHA II 0.52 0.26 0.04 0.79 0.30 0.01 
NYHA III 1.07 0.26 0.00 1.32 0.30 0.00 
NYHA IV  - - - - - -
ISCH  - - - - - -
TRT*AGE [65,75) - - - -0.35 0.53 0.51 
TRT*AGE ≥ 75 - - - 0.06 0.74 0.94 
TRT*EF > 30% - - - -0.24 0.62 0.69 
TRT*NYHA II - - - -1.21 0.62 0.05 
TRT*NYHA III - - - -1.07 0.60 0.08 
TRT*NYHA IV - -  - - -
TRT*ISCH  - - - - - -

Abbreviations:  EF = ejection fraction; ISCH = ischemic; MUSTT = Multicenter Unsustained Tachycardiac Trial; NYHA 
= New York Heart Association; SE = standard error; TRT = treatment 
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Appendix Table A12. Comparison of overall survival by treatment group adjusted by baseline 
prognostic variables using the Weibull regression model. Estimates from Weibull regression 
models fit to the SCD-HeFT trial. 

Parameter 
Model with Main Effects Only Model with Interactions 
Estimate SE P-value Estimate SE P-value 

TRT -0.30 0.10 0.00 -0.78 0.21 0.00 
AGE [65,75) 0.52 0.11 0.00 0.39 0.14 0.01 
AGE ≥ 75 0.52 0.16 0.00 0.59 0.21 0.00 
EF > 30% -0.58 0.11 0.00 -0.69 0.14 0.00 
NYHA II  - - - - - -
NYHA III 0.72 0.10 0.00 0.41 0.13 0.00 
NYHA IV  - - - - - -
ISCH 0.58 0.10 0.00 0.59 0.14 0.00 
TRT*AGE [65,75) - - - 0.28 0.22 0.19 
TRT*AGE ≥ 75 - - - -0.22 0.32 0.49 
TRT*EF > 30% - - - 0.29 0.22 0.18 
TRT*NYHA II  - - - - - -
TRT*NYHA III - - - 0.71 0.20 0.00 
TRT*NYHA IV  - - - - - -
TRT*ISCH - - - -0.01 0.21 0.95 

Abbreviations:  EF = ejection fraction; ISCH = ischemic; NYHA = New York Heart Association; SCD-HeFT = Sudden 
Cardiac Death in Heart Failure Trial; SE = standard error; TRT = treatment 
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Appendix Table A13. Combined analysis without covariate adjustment (except for trial effects) 

Weibull Regression 
Model 

Bayesian Weibull Regression 
Model 

Estimate 
95% CI 
Lower 

95% CI 
Upper Estimate 

95% CI 
Lower 

95% CI 
Upper 

Without adjustment for trial effect -0.38 -0.48 -0.27 -0.36 -0.46 -0.26 
Fixed trial effects -0.36 -0.47 -0.26 -0.35 -0.45 -0.23 
Random trial effects -0.38 -0.48 -0.28 -0.36 -0.46 -0.25 
Trial-specific baseline hazard -0.36 -0.47 -0.26 -0.37 -0.48 -0.25 

Abbreviation:  CI = confidence interval 
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Appendix Table A14. Combined analysis. Comparison of overall survival by treatment group 
adjusted by baseline prognostic variables using the Weibull regression model. Estimates from the 
Weibull regression models fit to all trials without adjustment for trial effects. 

Parameter 
Model with Main Effects Only Model with Interactions 
Estimate SE P-value Estimate SE P-value 

TRT -0.38 0.06 0.00 -0.42 0.19 0.03 
AGE [65,75) 0.48 0.06 0.00 0.43 0.08 0.00 
AGE ≥ 75 0.67 0.08 0.00 0.62 0.11 0.00 
EF > 30% -0.35 0.06 0.00 -0.43 0.08 0.00 
NYHA II 0.26 0.07 0.00 0.33 0.10 0.00 
NYHA III 0.87 0.08 0.00 0.85 0.10 0.00 
NYHA IV 0.60 0.18 0.00 0.24 0.28 0.38 
ISCH 0.52 0.07 0.00 0.55 0.10 0.00 
TRT*AGE [65,75) - - - 0.14 0.12 0.26 
TRT*AGE ≥ 75 - - - 0.12 0.16 0.44 
TRT*EF > 30% - - - 0.20 0.13 0.13 
TRT*NYHA II - - - -0.16 0.15 0.28 
TRT*NYHA III - - - 0.05 0.15 0.74 
TRT*NYHA IV - - - 0.67 0.36 0.07 
TRT*ISCH - - - -0.07 0.15 0.65 

Abbreviations:  EF = ejection fraction; ISCH = ischemic; NYHA = New York Heart Association; SE = standard error; 
TRT = treatment 

A-205
 




 

 

 
 
  

   
  

   
   

  

  
  
  
  

   
   

   
   

 
  

 

 
  

 

 
  

 
 

 

Appendix Table A15. Combined analysis. Comparison of overall survival by treatment group 
adjusted by baseline prognostic variables using the Weibull regression model. Estimates from the 
Weibull regression models fit to all trials with fixed trial effects. 

Parameter 
Model with Main Effects Only Model with Interactions 
Estimate SE P-value Estimate SE P-value 

TRT -0.35 0.06 0.00 -0.44 0.19 0.02 
AGE [65,75) 0.49 0.06 0.00 0.44 0.08 0.00 
AGE ≥ 75 0.68 0.08 0.00 0.62 0.11 0.00 
EF > 30% -0.49 0.07 0.00 -0.57 0.09 0.00 
NYHA II 0.33 0.08 0.00 0.40 0.10 0.00 
NYHA III 0.99 0.08 0.00 0.96 0.10 0.00 
NYHA IV 0.85 0.18 0.00 0.50 0.28 0.08 
ISCH 0.45 0.09 0.00 0.46 0.11 0.00 
CABG-PATCH -0.63 0.11 0.00 -0.63 0.11 0.00 
CASH 0.11 0.13 0.39 0.12 0.13 0.36 
DEFINITE -0.63 0.16 0.00 -0.63 0.17 0.00 
MADIT-I -0.21 0.15 0.17 -0.22 0.16 0.16 
MADIT-II -0.73 0.10 0.00 -0.73 0.11 0.00 
MUSTT -0.37 0.12 0.00 -0.37 0.12 0.00 
SCD-HeFT -0.60 0.10 0.00 -0.60 0.10 0.00 
TRT*AGE [65,75) - - - 0.13 0.12 0.29 
TRT*AGE ≥ 75 - - - 0.15 0.16 0.34 
TRT*EF > 30% - - - 0.19 0.13 0.14 
TRT*NYHA II - - - -0.15 0.15 0.32 
TRT*NYHA III - - - 0.08 0.15 0.60 
TRT*NYHA IV - - - 0.66 0.36 0.07 
TRT*ISCH - - - -0.02 0.15 0.88 

Abbreviations:  CABG-PATCH = Coronary Artery Bypass Graft-Patch trial; CASH = Cardiac Arrest Study Hamburg 
trial; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; EF = ejection fraction; 
ISCH = ischemic; MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter Automatic 
Defibrillator Implantation Trial-II; MUSTT = Multicenter Unsustained Tachycardiac Trial; NYHA = New York Heart 
Association; SCD-HeFT = Sudden Cardiac Death in Heart Failure Trial; SE = standard error; TRT = treatment 
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Appendix Table A16. Combined analysis. Comparison of overall survival by treatment group 
adjusted by baseline prognostic variables using the Weibull regression model. Estimates from the 
Weibull regression models fit to all trials with random trial effects. 

Parameter 
Model with Main Effects Only Model with Interactions 
Estimate SE P-value Estimate SE P-value 

TRT -0.38 0.06 0.00 -0.43 0.19 0.03 
AGE [65,75) 0.47 0.06 0.00 0.41 0.08 0.00 
AGE ≥ 75 0.66 0.08 0.00 0.60 0.11 0.00 
EF > 30% -0.35 0.06 0.00 -0.42 0.08 0.00 
NYHA II 0.40 0.08 0.00 0.47 0.10 0.00 
NYHA III 1.01 0.08 0.00 0.99 0.10 0.00 
NYHA IV 0.62 0.18 0.00 0.26 0.28 0.35 
ISCH 0.48 0.07 0.00 0.51 0.10 0.00 
TRT*AGE [65,75) - - - 0.15 0.12 0.23 
TRT*AGE ≥ 75 - - - 0.13 0.16 0.42 
TRT*EF > 30% - - - 0.18 0.13 0.16 
TRT*NYHA II - - - -0.16 0.15 0.30 
TRT*NYHA III - - - 0.06 0.15 0.69 
TRT*NYHA IV - - - 0.68 0.36 0.06 
TRT*ISCH - - - -0.06 0.15 0.67 

Abbreviations:  EF = ejection fraction; ISCH = ischemic; NYHA = New York Heart Association; SE = standard error; 
TRT = treatment 
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Appendix Table A17. Combined analysis. Comparison of overall survival by treatment group 
adjusted by baseline prognostic variables using the Weibull regression model. Estimates from the 
Weibull regression models fit to all trials with trial-specific baseline hazard functions. 

Parameter 
Model with Main Effects Only Model with Interactions 
Estimate SE P-value Estimate SE P-value 

TRT -0.35 0.06 0.00 -0.46 0.19 0.02 
AGE [65,75) 0.50 0.06 0.00 0.44 0.08 0.00 
AGE ≥ 75 0.69 0.08 0.00 0.63 0.11 0.00 
EF > 30% -0.49 0.07 0.00 -0.58 0.09 0.00 
NYHA II 0.32 0.08 0.00 0.38 0.10 0.00 
NYHA III 0.99 0.08 0.00 0.94 0.10 0.00 
NYHA IV 0.83 0.18 0.00 0.47 0.28 0.09 
ISCH 0.46 0.09 0.00 0.47 0.11 0.00 
TRT*AGE [65,75) - - - 0.13 0.12 0.28 
TRT*AGE ≥ 75 - - - 0.15 0.16 0.34 
TRT*EF > 30% - - - 0.20 0.13 0.12 
TRT*NYHA II - - - -0.14 0.15 0.34 
TRT*NYHA III - - - 0.10 0.15 0.53 
TRT*NYHA IV - - - 0.68 0.36 0.06 
TRT*ISCH - - - -0.01 0.15 0.93 

Abbreviations:  EF = ejection fraction; ISCH = ischemic; NYHA = New York Heart Association; SE = standard error; 
TRT = treatment 
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Appendix Table A18. Combined analysis. Comparison of overall survival by treatment group adjusted by baseline prognostic variables 
using the Bayesian Weibull regression model. Estimates from the Bayesian Weibull regression models fit to all trials without adjustment 
for trial effects. 

Parameter 

Model with Main Effects Only Model with Interactions 

Estimate SD 
95% Credible 

Interval Estimate SD 
95% Credible 

Interval 
TRT -0.38 0.06 -0.50 -0.27 -0.35 0.20 -0.80 0.00 
AGE [65,75) 0.47 0.06 0.36 0.58 0.42 0.07 0.29 0.57 
AGE ≥ 75 0.66 0.08 0.50 0.81 0.61 0.10 0.39 0.80 
EF > 30% -0.35 0.06 -0.47 -0.23 -0.43 0.09 -0.61 -0.26 
NYHA II 0.23 0.07 0.10 0.39 0.33 0.09 0.13 0.50 
NYHA III 0.85 0.07 0.70 0.98 0.85 0.10 0.64 1.04 
NYHA IV 0.56 0.17 0.24 0.89 0.19 0.24 -0.32 0.66 
ISCH 0.51 0.07 0.36 0.65 0.55 0.09 0.35 0.72 
TRT*AGE [65,75) - - - - 0.13 0.12 -0.12 0.35 
TRT*AGE ≥ 75 - - - - 0.12 0.15 -0.16 0.40 
TRT*EF > 30% - - - - 0.16 0.13 -0.11 0.40 
TRT*NYHA II - - - - -0.21 0.15 -0.46 0.09 
TRT*NYHA III - - - - 0.00 0.15 -0.28 0.32 
TRT*NYHA IV - - - - 0.66 0.33 0.00 1.28 
TRT*ISCH - - - - -0.09 0.15 -0.40 0.17 

Abbreviations:  EF = ejection fraction; ISCH = ischemic; NYHA = New York Heart Association; SD = standard deviation; TRT = treatment 
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Appendix Table A19. Combined analysis. Comparison of overall survival by treatment group adjusted by baseline prognostic variables 
using the Bayesian Weibull regression model. Estimates from the Bayesian Weibull regression models fit to all trials with fixed trial 
effects. 

Parameter 

Model with Main Effects Only Model with Interactions 

Estimate SD 
95% Credible 

Interval Estimate SD 
95% Credible 

Interval 
TRT -0.35 0.05 -0.45 -0.25 -0.43 0.19 -0.82 -0.08 
AGE [65,75) 0.49 0.06 0.37 0.61 0.42 0.07 0.28 0.56 
AGE ≥ 75 0.67 0.08 0.51 0.83 0.60 0.10 0.38 0.78 
EF > 30% -0.49 0.07 -0.62 -0.36 -0.57 0.09 -0.75 -0.38 
NYHA II 0.32 0.09 0.16 0.50 0.39 0.12 0.16 0.60 
NYHA III 0.98 0.09 0.81 1.16 0.96 0.11 0.72 1.17 
NYHA IV 0.82 0.17 0.50 1.16 0.51 0.28 -0.08 1.00 
ISCH 0.43 0.09 0.24 0.64 0.45 0.10 0.26 0.64 
AVID 0.19 0.53 -0.69 0.96 0.14 0.23 -0.29 0.51 
CABG-PATCH -0.43 0.52 -1.32 0.29 -0.49 0.23 -0.91 -0.12 
CASH 0.30 0.52 -0.62 1.07 0.25 0.25 -0.27 0.69 
DEFINITE -0.46 0.55 -1.44 0.38 -0.51 0.26 -1.01 -0.02 
MADIT-I -0.02 0.53 -0.95 0.77 -0.07 0.25 -0.57 0.36 
MADIT-II -0.52 0.53 -1.40 0.26 -0.57 0.23 -1.00 -0.20 
MUSTT -0.18 0.53 -1.07 0.61 -0.22 0.25 -0.70 0.19 
SCD-HeFT -0.41 0.52 -1.26 0.38 -0.46 0.24 -0.92 -0.08 
TRT*AGE [65,75) - - - - 0.15 0.11 -0.06 0.37 
TRT*AGE ≥ 75 - - - - 0.15 0.15 -0.13 0.45 
TRT*EF > 30% - - - - 0.20 0.12 -0.04 0.42 
TRT*NYHA II - - - - -0.16 0.16 -0.48 0.18 
TRT*NYHA III - - - - 0.06 0.17 -0.25 0.43 
TRT*NYHA IV - - - - 0.60 0.35 -0.05 1.29 
TRT*ISCH - - - - -0.04 0.16 -0.32 0.31 

Abbreviations:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery Bypass Graft-Patch trial; CASH = Cardiac Arrest 
Study Hamburg trial; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; EF = ejection fraction; ISCH = ischemic; MADIT-I = 
Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter Automatic Defibrillator Implantation Trial-II; MUSTT = Multicenter Unsustained 
Tachycardiac Trial; NYHA = New York Heart Association; SCD-HeFT = Sudden Cardiac Death in Heart Failure Trial; SD = standard deviation; TRT = treatment 
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Appendix Table A20. Combined analysis. Comparison of overall survival by treatment group adjusted by baseline prognostic variables 
using the Bayesian Weibull regression model. Estimates from the Bayesian Weibull regression models fit to all trials with random trial 
effects. 

Parameter 

Model with Main Effects Only Model with Interactions 

Estimate SD 
95% Credible 

Interval Estimate SD 
95% Credible 

Interval 
TRT -0.36 0.05 -0.47 -0.26 -0.58 0.18 -0.92 -0.21 
AGE [65,75) 0.49 0.06 0.38 0.61 0.43 0.07 0.31 0.57 
AGE ≥ 75 0.68 0.08 0.53 0.84 0.59 0.11 0.36 0.80 
EF > 30% -0.49 0.07 -0.62 -0.36 -0.58 0.08 -0.74 -0.42 
NYHA II 0.31 0.08 0.15 0.44 0.34 0.09 0.19 0.51 
NYHA III 0.96 0.08 0.80 1.12 0.91 0.09 0.73 1.08 
NYHA IV 0.78 0.18 0.43 1.12 0.45 0.25 -0.07 0.92 
ISCH 0.44 0.09 0.26 0.64 0.38 0.10 0.18 0.56 
TRT*AGE [65,75) - - - - 0.16 0.11 -0.07 0.37 
TRT*AGE ≥ 75 - - - - 0.17 0.16 -0.14 0.48 
TRT*EF > 30% - - - - 0.19 0.14 -0.07 0.44 
TRT*NYHA II - - - - -0.09 0.14 -0.40 0.16 
TRT*NYHA III - - - - 0.13 0.13 -0.12 0.38 
TRT*NYHA IV - - - - 0.64 0.33 0.01 1.30 
TRT*ISCH - - - - 0.07 0.16 -0.25 0.33 

Abbreviations:  EF = ejection fraction; ISCH = ischemic; NYHA = New York Heart Association; SD = standard deviation; TRT = treatment 
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Appendix Table A21. Combined analysis. Comparison of overall survival by treatment group adjusted by baseline prognostic variables 
using the Bayesian Weibull regression model. Estimates from the Bayesian Weibull regression models fit to all trials with trial-specific 
baseline hazard functions. 

Parameter 

Model with Main Effects Only Model with Interactions 

Estimate SD 
95% Credible 

Interval Estimate SD 
95% Credible 

Interval 
TRT -0.35 0.06 -0.45 -0.24 -0.50 0.18 -0.85 -0.19 
AGE [65,75) 0.49 0.06 0.37 0.61 0.42 0.08 0.27 0.58 
AGE ≥ 75 0.68 0.08 0.53 0.84 0.60 0.10 0.41 0.79 
EF > 30% -0.50 0.07 -0.65 -0.37 -0.58 0.09 -0.76 -0.42 
NYHA II 0.29 0.08 0.12 0.44 0.36 0.09 0.19 0.55 
NYHA III 0.96 0.09 0.78 1.11 0.92 0.09 0.74 1.09 
NYHA IV 0.77 0.19 0.38 1.13 0.46 0.27 -0.12 0.94 
ISCH 0.42 0.09 0.23 0.59 0.43 0.09 0.25 0.62 
TRT*AGE [65,75) - - - - 0.16 0.12 -0.08 0.37 
TRT*AGE ≥ 75 - - - - 0.17 0.15 -0.12 0.48 
TRT*EF > 30% - - - - 0.20 0.12 -0.05 0.44 
TRT*NYHA II - - - - -0.13 0.14 -0.40 0.15 
TRT*NYHA III - - - - 0.11 0.13 -0.13 0.38 
TRT*NYHA IV - - - - 0.63 0.33 -0.01 1.29 
TRT*ISCH - - - - 0.01 0.14 -0.30 0.26 

Abbreviations:  EF = ejection fraction; ISCH = ischemic; NYHA = New York Heart Association; SD = standard deviation; TRT = treatment 
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Appendix Table A22. Combined analysis. Estimates from the Bayesian Hierarchical Weibull Regression Model with categorical (AGE 
and EF). 

Effect Source Trial 

Model with Main Effects Only Model with Interactions 

Estimate SD 
95% Credible 

Interval Estimate SD 
95% Credible 

Interval 
TRT Population - -0.43 0.23 -0.90 0.03 -0.54 0.34 -1.24 0.09 
AGE [65,75) Population - 0.45 0.22 -0.01 0.85 0.41 0.23 -0.03 0.85 
AGE ≥ 75 Population - 0.64 0.24 0.15 1.14 0.61 0.27 0.08 1.14 
EF > 30% Population - -0.43 0.23 -0.89 0.03 -0.40 0.26 -0.92 0.14 
NYHA II Population - 0.32 0.24 -0.18 0.81 0.30 0.27 -0.22 0.81 
NYHA III Population - 0.97 0.25 0.45 1.44 0.96 0.26 0.42 1.45 
NYHA IV Population - 0.47 0.62 -0.85 1.60 0.35 0.60 -0.91 1.46 
ISCH Population - -0.03 0.35 -0.75 0.60 0.03 0.32 -0.63 0.65 
TRT*AGE 
[65,75) Population - 0.12 0.27 -0.45 0.64 
TRT*AGE ≥ 75 Population - -0.02 0.31 -0.65 0.57 
TRT*EF > 30% Population - 0.04 0.32 -0.65 0.60 
TRT*NYHA II Population - 0.04 0.32 -0.61 0.73 
TRT*NYHA III Population - 0.05 0.34 -0.66 0.70 
TRT*NYHA IV Population - 0.37 0.65 -0.89 1.72 
TRT*ISCH Population - -0.03 0.32 -0.65 0.58 

TRT Trial-
specific 

AVID -0.43 0.14 -0.69 -0.15 -0.52 0.30 -1.19 0.04 
CABG
PATCH 0.05 0.14 -0.20 0.35 -0.16 0.35 -0.82 0.57 
CASH -0.19 0.20 -0.58 0.22 -0.93 0.51 -2.02 0.10 
DEFINITE -0.48 0.23 -0.95 -0.05 -0.63 0.37 -1.36 0.09 
MADIT-I -0.80 0.26 -1.35 -0.35 -0.82 0.63 -2.27 0.32 
MADIT-II -0.48 0.14 -0.74 -0.20 -0.38 0.45 -1.44 0.36 
MUSTT -0.85 0.22 -1.28 -0.44 -0.57 0.55 -1.73 0.53 
SCD-
HeFT -0.31 0.10 -0.51 -0.09 -0.67 0.48 -1.45 0.19 
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Appendix Table A22. Combined analysis. Estimates from the Bayesian Hierarchical Weibull Regression Model with categorical (AGE 
and EF) – continued. 

Effect Source Trial 

Model with Main Effects Only Model with Interactions 

Estimate SD 
95% Credible 

Interval Estimate SD 
95% Credible 

Interval 
AGE [65,75) Trial-

specific 
AVID 0.31 0.16 0.00 0.61 0.32 0.18 -0.03 0.67 
CABG
PATCH 0.60 0.15 0.32 0.91 0.49 0.21 0.06 0.91 
CASH 0.64 0.21 0.24 1.05 0.49 0.25 -0.01 0.98 
DEFINITE 0.43 0.25 -0.06 0.92 0.26 0.28 -0.32 0.83 
MADIT-I 0.55 0.24 0.05 1.02 0.50 0.30 -0.09 1.06 
MADIT-II 0.60 0.16 0.31 0.93 0.67 0.20 0.25 1.04 
MUSTT 0.14 0.21 -0.25 0.55 0.20 0.22 -0.24 0.67 
SCD-
HeFT 0.52 0.10 0.32 0.70 0.40 0.13 0.14 0.65 

AGE ≥ 75 Trial- AVID 0.64 0.18 0.28 0.97 0.50 0.21 0.10 0.92 
specific CABG

PATCH 0.68 0.20 0.30 1.05 0.45 0.27 -0.07 0.97 
CASH 0.78 0.40 -0.05 1.55 0.77 0.42 -0.13 1.55 
DEFINITE 1.01 0.31 0.42 1.60 1.13 0.39 0.34 1.86 
MADIT-I 0.66 0.38 -0.07 1.43 0.67 0.40 -0.18 1.47 
MADIT-II 1.06 0.19 0.71 1.43 1.09 0.26 0.58 1.56 
MUSTT 0.03 0.26 -0.48 0.51 0.03 0.28 -0.57 0.58 
SCD-
HeFT 0.52 0.15 0.22 0.81 0.58 0.19 0.17 0.95 

EF > 30% Trial-
specific 

AVID -0.55 0.14 -0.82 -0.30 -0.60 0.20 -0.96 -0.19 
CABG
PATCH -0.29 0.17 -0.64 0.01 -0.19 0.20 -0.58 0.20 
CASH -0.26 0.22 -0.68 0.14 -0.36 0.25 -0.83 0.11 
DEFINITE -0.36 0.45 -1.27 0.47 -0.29 0.46 -1.21 0.61 
MADIT-I -0.64 0.39 -1.52 0.01 -0.56 0.42 -1.46 0.21 
MADIT-II -0.27 0.59 -1.45 0.82 -0.16 0.62 -1.39 1.13 
MUSTT -0.55 0.22 -1.01 -0.15 -0.54 0.25 -1.02 -0.09 
SCD-
HeFT -0.58 0.10 -0.77 -0.39 -0.67 0.13 -0.90 -0.42 
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Appendix Table A22. Combined analysis. Estimates from the Bayesian Hierarchical Weibull Regression Model with categorical (AGE 
and EF) – continued. 

Effect Source Trial 

Model with Main Effects Only Model with Interactions 

Estimate SD 
95% Credible 

Interval Estimate SD 
95% Credible 

Interval 
NYHA II Trial- AVID 0.44 0.16 0.11 0.76 0.47 0.21 0.12 0.89 

specific CABG
PATCH 0.50 0.18 0.16 0.84 0.30 0.25 -0.19 0.79 
CASH 0.53 0.26 0.00 1.07 0.57 0.30 0.03 1.15 
DEFINITE -0.06 0.26 -0.55 0.46 -0.22 0.31 -0.78 0.42 
MADIT-I 0.43 0.29 -0.13 1.05 0.34 0.32 -0.25 0.97 
MADIT-II 0.05 0.19 -0.33 0.44 0.09 0.21 -0.31 0.48 
MUSTT 0.52 0.24 0.01 0.98 0.58 0.27 0.06 1.11 
SCD-
HeFT 0.23 0.49 -0.74 1.04 0.43 0.39 -0.42 1.05 

NYHA III Trial- AVID 0.95 0.20 0.58 1.34 0.95 0.22 0.53 1.37 
specific CABG

PATCH 0.90 0.16 0.59 1.21 0.86 0.24 0.35 1.34 
CASH 1.46 0.30 0.91 2.06 1.27 0.34 0.61 1.94 
DEFINITE 0.73 0.27 0.18 1.25 0.83 0.31 0.23 1.47 
MADIT-I 1.32 0.30 0.73 1.91 1.25 0.34 0.58 1.91 
MADIT-II 0.76 0.17 0.44 1.11 0.91 0.18 0.52 1.27 
MUSTT 1.07 0.25 0.56 1.55 1.12 0.25 0.64 1.64 
SCD-
HeFT 0.95 0.48 -0.01 1.72 0.85 0.40 -0.04 1.51 

NYHA IV Trial-
specific 

AVID 0.50 1.39 -2.38 3.19 0.37 1.31 -2.19 2.75 
CABG
PATCH 0.49 0.25 0.01 0.98 0.42 0.38 -0.32 1.16 
CASH 0.52 1.37 -2.39 3.22 0.37 1.32 -2.51 2.93 
DEFINITE 0.52 1.42 -2.34 3.17 0.35 1.37 -2.40 3.09 
MADIT-I 0.47 1.38 -2.23 2.74 0.31 1.33 -2.27 2.90 
MADIT-II 0.96 0.28 0.44 1.46 0.52 0.39 -0.25 1.32 
MUSTT 0.57 1.20 -1.94 2.97 0.36 1.31 -2.44 2.62 
SCD-
HeFT 0.48 1.40 -2.56 3.11 0.30 1.27 -2.35 2.92 
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Appendix Table A22. Combined analysis. Estimates from the Bayesian Hierarchical Weibull Regression Model with categorical (AGE 
and EF) – continued. 

Effect Source Trial 

Model with Main Effects Only Model with Interactions 

Estimate SD 
95% Credible 

Interval Estimate SD 
95% Credible 

Interval 
ISCH Trial- AVID 0.27 0.19 -0.05 0.67 0.26 0.21 -0.18 0.66 

specific CABG
PATCH -0.95 0.39 -1.58 -0.17 -0.87 0.33 -1.54 -0.30 
CASH -0.19 0.29 -0.77 0.40 -0.25 0.31 -0.89 0.36 
DEFINITE -0.06 0.92 -1.94 1.83 0.05 0.88 -1.61 1.95 
MADIT-I 0.19 0.61 -1.40 1.23 0.10 0.60 -1.08 1.40 
MADIT-II -0.11 0.46 -0.88 0.77 0.34 0.41 -0.43 1.37 
MUSTT 0.01 0.59 -1.06 1.08 0.02 0.63 -1.31 1.10 
SCD-
HeFT 0.55 0.10 0.35 0.75 0.55 0.11 0.33 0.78 

TRT*AGE Trial- AVID - - - - -0.07 0.30 -0.67 0.52 
[65,75) specific CABG

PATCH - - - - 0.25 0.28 -0.30 0.78 
CASH - - - - 0.54 0.37 -0.18 1.26 
DEFINITE - - - - 0.22 0.43 -0.54 1.15 
MADIT-I - - - - 0.17 0.44 -0.68 1.02 
MADIT-II - - - - -0.17 0.28 -0.70 0.33 
MUSTT - - - - -0.24 0.45 -1.16 0.63 
SCD-
HeFT - - - - 0.27 0.18 -0.07 0.63 

TRT*AGE ≥ 75 Trial-
specific 

AVID    - 0.34 0.32 -0.29 1.00 
CABG
PATCH - - - - 0.47 0.35 -0.22 1.16 
CASH    - -0.07 0.64 -1.35 1.13 
DEFINITE     - -0.25 0.49 -1.24 0.69 
MADIT-I     - -0.36 0.76 -1.99 1.04 
MADIT-II    - -0.05 0.33 -0.66 0.65 
MUSTT     - -0.07 0.51 -1.05 0.90 
SCD-
HeFT - - - - -0.21 0.28 -0.72 0.34 
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Appendix Table A22. Combined analysis. Estimates from the Bayesian Hierarchical Weibull Regression Model with categorical (AGE 
and EF) – continued. 

Effect Source Trial 

Model with Main Effects Only Model with Interactions 

Estimate SD 
95% Credible 

Interval Estimate SD 
95% Credible 

Interval 
TRT*EF > 30% Trial- AVID    - 0.20 0.26 -0.31 0.75 

specific CABG
PATCH - - - - -0.21 0.30 -0.82 0.37 
CASH    - 0.40 0.35 -0.25 1.08 
DEFINITE     - -0.03 0.61 -1.25 1.13 
MADIT-I     - -0.18 0.52 -1.25 0.77 
MADIT-II    - 0.04 0.83 -1.84 1.74 
MUSTT     - -0.13 0.48 -1.12 0.82 
SCD-
HeFT - - - - 0.25 0.19 -0.14 0.59 

TRT*NYHA II Trial- AVID    - -0.12 0.30 -0.74 0.43 
specific CABG

PATCH 
CASH 

-

-

- - -

- - -
0.41 
0.04 

0.37 
0.44 

-0.35 
-0.89 

1.11 
0.88 

DEFINITE - - - - 0.35 0.42 -0.39 1.21 
MADIT-I - - - - 0.41 0.54 -0.69 1.36 
MADIT-II - - - - -0.08 0.28 -0.62 0.48 
MUSTT - - - - -0.52 0.50 -1.54 0.40 
SCD-
HeFT - - - - -0.12 0.47 -0.94 0.64 

TRT*NYHA III Trial-
specific 

AVID - - - - -0.12 0.37 -0.90 0.55 
CABG
PATCH - - - - 0.12 0.35 -0.55 0.82 
CASH - - - - 0.76 0.50 -0.24 1.76 
DEFINITE - - - - -0.42 0.48 -1.42 0.47 
MADIT-I - - - - 0.20 0.53 -0.87 1.26 
MADIT-II - - - - -0.26 0.27 -0.78 0.28 
MUSTT - - - - -0.42 0.45 -1.31 0.48 
SCD-
HeFT - - - - 0.57 0.47 -0.28 1.31 

A-217
 
 




 

 

 
 

 

  

 

   

  
  
  
  
  
  
  

 
  
  
  
  
  
  

 

 
 

 

  

   
  
  
  
  
  
 
 

 

 
 

 

  

 

  
 

  
  

 

Appendix Table A22. Combined analysis. Estimates from the Bayesian Hierarchical Weibull Regression Model with categorical (AGE 
and EF) – continued. 

Model with Main Effects Only Model with Interactions 
95% Credible 95% Credible 

Effect Source Trial Estimate SD Interval Estimate SD Interval 
TRT*NYHA IV Trial- AVID - - - - 0.36 1.52 -2.82 3.39 

specific CABG
PATCH - - - - 0.17 0.48 -0.81 1.06 
CASH - - - - 0.38 1.47 -2.51 3.29 
DEFINITE - - - - 0.33 1.49 -2.70 3.15 
MADIT-I - - - - 0.40 1.42 -2.49 3.16 
MADIT-II - - - - 0.83 0.48 -0.08 1.73 
MUSTT - - - - 0.45 1.46 -2.32 3.39 
SCD-
HeFT - - - - 0.36 1.47 -2.80 3.08 

TRT*ISCH Trial-
specific 

AVID - - - - -0.03 0.30 -0.51 0.58 
CABG
PATCH - - - - -0.07 0.38 -0.79 0.61 
CASH - - - - 0.15 0.46 -0.72 1.01 
DEFINITE - - - - -0.04 0.81 -1.64 1.54 
MADIT-I - - - - -0.35 0.60 -1.54 0.92 
MADIT-II - - - - 0.04 0.48 -0.70 1.09 
MUSTT - - - - 0.03 0.55 -0.97 1.19 
SCD-
HeFT - - - - 0.02 0.18 -0.33 0.36 

Abbreviations for Appendix Table A22:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery Bypass Graft-Patch trial; 
CASH = Cardiac Arrest Study Hamburg trial; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; EF = ejection fraction; ISCH = 
ischemic; MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter Automatic Defibrillator Implantation Trial-II; MUSTT = 
Multicenter Unsustained Tachycardiac Trial; NYHA = New York Heart Association; SCD-HeFT = Sudden Cardiac Death in Heart Failure Trial; SD = standard 
deviation; TRT = treatment 
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Appendix Table A23. Hazard ratios for the effect of treatment given main prognostic variables 

Variable Trial 
Hazard Ratio Probability 

HR ≤ 0.802.50% 50.00% 97.50% 
ICD Effect AVID 0.50 0.64 0.86 0.92 

CABG-PATCH 0.82 1.04 1.41 0.02 
CASH 0.56 0.83 1.25 0.43 
DEFINITE 0.39 0.62 0.95 0.87 
MADIT-I 0.26 0.45 0.71 0.99 
MADIT-II 0.48 0.62 0.82 0.95 
MUSTT 0.28 0.43 0.64 1.00 
SCD-HeFT 0.60 0.73 0.91 0.82 
Overall 0.41 0.65 1.03 0.82 

ICD and Age AVID 0.25 0.58 1.03 0.85 
[65,75) Effect CABG-PATCH 0.49 1.08 2.36 0.19 

CASH 0.22 0.68 2.01 0.61 
DEFINITE 0.26 0.67 1.68 0.62 
MADIT-I 0.12 0.53 2.06 0.73 
MADIT-II 0.18 0.62 1.37 0.70 
MUSTT 0.11 0.46 1.51 0.79 
SCD-HeFT 0.31 0.67 1.68 0.65 
Overall 0.29 0.66 1.43 0.69 

ICD and Age AVID 0.39 0.86 1.77 0.44 
75+ Effect CABG-PATCH 0.50 1.36 3.75 0.13 

CASH 0.08 0.38 1.95 0.83 
DEFINITE 0.15 0.40 1.30 0.87 
MADIT-I 
MADIT-II 

0.04 
0.20 

0.33 
0.66 

1.73 
1.94 

0.84 
0.62 

MUSTT 0.13 0.55 2.24 0.71 
SCD-HeFT 0.15 0.41 1.13 0.88 
Overall 0.23 0.58 1.40 0.78 

ICD and EF ≥ AVID 0.36 0.73 1.52 0.61 
30% Effect CABG-PATCH 0.29 0.69 1.77 0.62 

CASH 0.20 0.60 1.61 0.71 
DEFINITE 0.14 0.51 2.02 0.72 
MADIT-I 0.07 0.39 1.47 0.84 
MADIT-II 0.08 0.73 4.35 0.54 
MUSTT 0.11 0.51 1.80 0.75 
SCD-HeFT 0.30 0.61 1.75 0.65 
Overall 0.22 0.62 1.37 0.73 

ICD and NYHA AVID 0.26 0.54 1.00 0.89 
II Effect CABG-PATCH 0.52 1.29 3.31 0.17 

CASH 0.15 0.41 1.08 0.91 
DEFINITE 0.35 0.76 1.48 0.56 
MADIT-I 0.18 0.67 2.45 0.61 
MADIT-II 0.20 0.68 1.50 0.65 
MUSTT 0.10 0.33 1.18 0.91 
SCD-HeFT 0.30 0.45 0.68 1.00 
Overall 0.26 0.62 1.29 0.77 
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Appendix Table A23. Hazard ratios for the effect of treatment given main prognostic variables – 
continued 

Variable Trial 
Hazard Ratio Probability 

HR ≤ 0.802.50% 50.00% 97.50% 
ICD and NYHA AVID 0.24 0.53 1.24 0.85 
III Effect CABG-PATCH 0.44 0.95 2.34 0.36 

CASH 0.29 0.83 2.57 0.47 
DEFINITE 0.14 0.36 0.76 0.98 
MADIT-I 0.12 0.56 2.13 0.72 
MADIT-II 0.18 0.53 1.37 0.80 
MUSTT 0.12 0.37 1.27 0.87 
SCD-HeFT 0.60 0.90 1.34 0.26 
Overall 0.26 0.61 1.40 0.74 

ICD and NYHA AVID 0.03 0.84 18.64 0.48 
IV Effect CABG-PATCH 0.34 1.00 3.07 0.35 

CASH 0.03 0.57 11.70 0.61 
DEFINITE 0.04 0.75 14.64 0.53 
MADIT-I 0.03 0.67 12.22 0.56 
MADIT-II 0.37 1.63 5.37 0.16 
MUSTT 0.04 0.86 19.27 0.47 
SCD-HeFT 0.02 0.77 13.96 0.51 
Overall 0.20 0.84 3.43 0.49 

ICD and AVID 0.36 0.58 0.94 0.88 
Ischemic Effect CABG-PATCH 0.43 0.81 1.43 0.48 

CASH 0.15 0.46 1.22 0.90 
DEFINITE 0.09 0.50 2.86 0.71 
MADIT-I 0.11 0.31 0.93 0.95 
MADIT-II 0.42 0.71 1.17 0.69 
MUSTT 0.22 0.59 1.30 0.76 
SCD-HeFT 0.23 0.51 1.24 0.75 
Overall 0.24 0.57 1.21 0.80 

Abbreviations for Appendix Table A23:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH 
= Coronary Artery Bypass Graft-Patch trial; CASH = Cardiac Arrest Study Hamburg trial; DEFINITE = Defibrillators in 
Non-Ischemic Cardiomyopathy Treatment Evaluation trial; EF = ejection fraction; HR = hazard ratio; ICD = 
implantable cardioverter defibrillator; MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = 
Multicenter Automatic Defibrillator Implantation Trial-II; MUSTT = Multicenter Unsustained Tachycardiac Trial; NYHA 
= New York Heart Association; SCD-HeFT = Sudden Cardiac Death in Heart Failure Trial 

A-220
 




 

 

 

   
  

   
       
       
       
       
       
       
       
       
       

        
        
        
        
        
        
        
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       

Appendix Table A24. Hazard ratios for the effect of treatment given 48 subgroups of prognostic 
variables 

Subgroup 
Age 

Group EF NYHA 
Isch/Non-
Isch 

Hazard Ratio 
Lower Median Upper 

Probability 
HR ≤ 0.80 

1 < 65 < 30% I Non-Isch 0.29 0.59 1.09 0.84 
2 < 65 < 30% I Isch 0.24 0.57 1.21 0.80 
3 < 65 < 30% II Non-Isch 0.26 0.62 1.29 0.77 
4 < 65 < 30% II Isch 0.22 0.58 1.42 0.75 
5 < 65 < 30% III Non-Isch 0.26 0.61 1.40 0.74 
6 < 65 < 30% III Isch 0.24 0.59 1.55 0.74 
7 < 65 < 30% IV Non-Isch 0.20 0.84 3.43 0.49 
8 < 65 < 30% IV Isch 0.18 0.81 3.43 0.50 
9 < 65 ≥ 30% I Non-Isch 0.22 0.62 1.37 0.73 

10 < 65 ≥ 30% I Isch 0.20 0.58 1.56 0.74 
11 < 65 ≥ 30% II Non-Isch 0.21 0.63 1.66 0.68 
12 < 65 ≥ 30% II Isch 0.18 0.60 1.79 0.70 
13 < 65 ≥ 30% III Non-Isch 0.22 0.64 1.72 0.66 
14 < 65 ≥ 30% III Isch 0.19 0.61 1.77 0.69 
15 < 65 ≥ 30% IV Non-Isch 0.17 0.89 4.51 0.46 
16 < 65 ≥ 30% IV Isch 0.16 0.85 3.89 0.46 
17 [65,75) < 30% I Non-Isch 0.29 0.66 1.43 0.69 
18 [65,75) < 30% I Isch 0.26 0.64 1.61 0.68 
19 [65,75) < 30% II Non-Isch 0.26 0.69 1.68 0.62 
20 [65,75) < 30% II Isch 0.23 0.66 1.84 0.65 
21 [65,75) < 30% III Non-Isch 0.26 0.70 1.78 0.62 
22 [65,75) < 30% III Isch 0.24 0.66 1.97 0.65 
23 [65,75) < 30% IV Non-Isch 0.22 0.95 4.33 0.43 
24 [65,75) < 30% IV Isch 0.20 0.93 4.27 0.43 
25 [65,75) ≥ 30% I Non-Isch 0.24 0.69 1.78 0.61 
26 [65,75) ≥ 30% I Isch 0.22 0.67 1.94 0.66 
27 [65,75) ≥ 30% II Non-Isch 0.21 0.72 2.09 0.57 
28 [65,75) ≥ 30% II Isch 0.20 0.68 2.29 0.61 
29 [65,75) ≥ 30% III Non-Isch 0.22 0.74 2.14 0.57 
30 [65,75) ≥ 30% III Isch 0.21 0.69 2.38 0.61 
31 [65,75) ≥ 30% IV Non-Isch 0.19 0.99 5.21 0.39 
32 [65,75) ≥ 30% IV Isch 0.17 0.96 5.00 0.41 
33 75+ < 30% I Non-Isch 0.23 0.58 1.40 0.78 
34 75+ < 30% I Isch 0.20 0.56 1.52 0.77 
35 75+ < 30% II Non-Isch 0.21 0.60 1.53 0.71 
36 75+ < 30% II Isch 0.21 0.56 1.66 0.73 
37 75+ < 30% III Non-Isch 0.21 0.61 1.61 0.73 
38 75+ < 30% III Isch 0.21 0.58 1.72 0.72 
39 75+ < 30% IV Non-Isch 0.18 0.83 4.05 0.49 
40 75+ < 30% IV Isch 0.15 0.80 4.27 0.50 
41 75+ ≥ 30% I Non-Isch 0.19 0.61 1.72 0.71 
42 75+ ≥ 30% I Isch 0.17 0.57 1.88 0.72 
43 75+ ≥ 30% II Non-Isch 0.18 0.62 1.91 0.66 
44 75+ ≥ 30% II Isch 0.17 0.59 2.10 0.69 
45 75+ ≥ 30% III Non-Isch 0.18 0.63 1.94 0.67 
46 75+ ≥ 30% III Isch 0.18 0.60 2.04 0.69 
47 75+ ≥ 30% IV Non-Isch 0.16 0.85 5.32 0.46 
48 75+ ≥ 30% IV Isch 0.14 0.80 4.74 0.50 
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Abbreviations:  EF = ejection fraction; HR = hazard ratio; Isch = ischemic; Non-Isch = non-ischemic; NYHA = New 
York Heart Association 
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Appendix Table A25. Model selection based on Deviance Information Criterion (DIC) 

Model 
Main Effects 

Only 
Including 

Interactions 
No adjustment for trial effects 8786.20 8743.20 
Fixed trial effects 8712.40 8711.30 
Random trial effects 8690.00 8710.40 
Trial-specific baseline hazard 8591.17 8596.68 
Fully hierarchical 8592.45 8602.05 
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Appendix Table A26. Descriptive statistics for CMS ICD registry 

Characteristic Value 
Age 

Mean, years 72.78 
Median, years 73.5 

Standard deviation, years 9.89 
Ejection Fraction 

Mean, % 27.11 
Median, % 25 

Standard deviation, % 10.11 
NYHA Class 

Class I 13,812 (11.38 %) 
Class II 40,441 (33.31%) 
Class III 59,656 (49.14%) 
Class IV 6299 (5.19%) 

Ischemic Disease 
Yes 87,055 (71.71%) 
No 33,968 (27.98%) 

Abbreviations:  CMS = Centers for Medicare & Medicaid Services; ICD = implantable cardioverter defibrillator 
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Appendix Table A27. Descriptive statistics for MUSTT registry 

Characteristic Control ICD 
Number of patients 1414 84 
Age Mean 

(SD) 
65.1 (9.50) 63.0 (9.20) 

< 65 607 (42.93%) 41 (48.81%) 
[65,75) 618 (43.71%) 38 (45.24%) 
[75,85) 186 (13.15%) 5 (5.95%) 
≥ 85 3 (0.21%) 0 

Ejection Fraction Mean 
(SD) 

28 (7.90) 27.7 (8.00) 

≤ 30% 878 (62.09%) 55 (65.48%) 
> 30% 536 (37.91%) 29 (34.52%) 

Ischemic Disease Yes 1414 (100.00%) 84 (100.00%) 
No 0 0 

NYHA Class I 249 (36.89%) 18 (51.43%) 
II 263 (38.96%) 13 (37.14%) 
III 162 (24.00%) 4 (11.43%) 
IV 1 (0.15%) 0 

* Entries refer to means accompanied by standard deviations for continuous variables, or counts followed by 
percentages for categorical variables. 

Abbreviations:  ICD = implantable cardioverter defibrillator; MUSTT = Multicenter Unsustained Tachycardiac Trial; 
NYHA = New York Heart Association; SD = standard deviation 
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Appendix Table A28. Posterior estimates from Bayesian models, with fixed-effect and random-effects formulation, using aggregate data 
by number of combined trials. We utilize two priors: prior 1 has precision 1, while prior 2 has precision 20. Trials were combined in the 
following order (based on their publication date): MADIT-I, AVID, CABG-PATCH, MUSTT, CASH, MADIT-II, DEFINITE, SCD-HeFT. 

Trials 
Combined 

Prior 1 Prior 2 
Fixed Effect Random Effects Fixed Effect Random Effects 

Esti
mate SD 

95% 
Credible 
Interval 

Esti
mate SD 

95% 
Credible 
Interval 

Esti
mate SD 

95% 
Credible 
Interval 

Esti
mate SD 

95% 
Credible 
Interval 

1 -0.45 0.75 -1.91 1.07 -0.41 0.81 -1.94 1.30 -0.13 0.21 -0.53 0.27 -0.13 0.21 -0.54 0.29 
2 -0.47 0.63 -1.70 0.77 -0.47 0.62 -1.66 0.84 -0.20 0.19 -0.58 0.18 -0.20 0.19 -0.56 0.18 
3 -0.32 0.53 -1.37 0.74 -0.34 0.53 -1.35 0.73 -0.15 0.18 -0.50 0.18 -0.16 0.17 -0.50 0.18 
4 -0.44 0.48 -1.38 0.50 -0.46 0.45 -1.34 0.46 -0.24 0.16 -0.56 0.09 -0.24 0.17 -0.56 0.09 
5 -0.37 0.44 -1.24 0.49 -0.40 0.39 -1.14 0.38 -0.22 0.16 -0.53 0.08 -0.23 0.16 -0.54 0.08 
6 -0.38 0.41 -1.18 0.43 -0.41 0.34 -1.05 0.27 -0.25 0.15 -0.54 0.04 -0.25 0.15 -0.54 0.04 
7 -0.38 0.38 -1.13 0.37 -0.42 0.30 -1.02 0.19 -0.26 0.14 -0.54 0.02 -0.26 0.14 -0.54 0.01 
8 -0.38 0.36 -1.10 0.35 -0.40 0.27 -0.94 0.13 -0.26 0.13 -0.52 0.00 -0.26 0.13 -0.53 0.00 

Abbreviations:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery Bypass Graft-Patch trial; CASH = Cardiac Arrest 
Study Hamburg trial; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; MADIT-I = Multicenter Automatic Defibrillator 
Implantation Trial-I; MADIT-II = Multicenter Automatic Defibrillator Implantation Trial-II; MUSTT = Multicenter Unsustained Tachycardiac Trial; SCD-HeFT = 
Sudden Cardiac Death in Heart Failure Trial; SD = standard deviation 
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Appendix Table A29. Posterior estimates from Bayesian models, with fixed-effect and random-effects formulation, using patient-level 
data by number of combined trials. We utilize two priors: prior 1 has precision 1, while prior 2 has precision 5. Trials were combined in the 
following order (based on their publication date): MADIT-I, AVID, CABG-PATCH, MUSTT, CASH, MADIT-II, DEFINITE, SCD-HeFT. 

Trials 
Combined 

Prior 1 Prior 2 
Fixed Effect Random Effects Fixed Effect Random Effects 

Esti
mate SD 

95% 
Credible 
Interval 

Esti
mate SD 

95% 
Credible 
Interval 

Esti
mate SD 

95% 
Credible 
Interval 

Esti
mate SD 

95% 
Credible 
Interval 

1 -0.94 0.27 -1.49 -0.43 -0.46 0.75 -1.79 1.15 -0.82 0.23 -1.27 -0.39 -0.37 0.36 -1.02 0.33 
2 -0.40 0.70 -1.73 1.06 -0.49 0.59 -1.62 0.66 -0.40 0.32 -1.06 0.21 -0.45 0.29 -0.99 0.15 
3 -0.27 0.62 -1.52 0.96 -0.33 0.46 -1.24 0.67 -0.36 0.29 -0.94 0.20 -0.30 0.25 -0.79 0.19 
4 -0.38 0.57 -1.51 0.75 -0.45 0.40 -1.26 0.35 -0.44 0.27 -0.95 0.10 -0.43 0.23 -0.88 0.03 
5 -0.40 0.54 -1.46 0.68 -0.42 0.34 -1.08 0.25 -0.44 0.25 -0.92 0.04 -0.39 0.20 -0.76 0.04 
6 -0.35 0.50 -1.31 0.65 -0.40 0.28 -0.95 0.13 -0.45 0.23 -0.91 0.00 -0.40 0.18 -0.73 -0.04 
7 -0.39 0.49 -1.34 0.58 -0.43 0.26 -0.97 0.14 -0.48 0.22 -0.89 -0.04 -0.41 0.17 -0.74 -0.06 
8 -0.42 0.44 -1.31 0.46 -0.42 0.23 -0.85 0.06 -0.45 0.20 -0.84 -0.05 -0.39 0.16 -0.70 -0.08 

Abbreviations:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery Bypass Graft-Patch trial; CASH = Cardiac Arrest 
Study Hamburg trial; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; MADIT-I = Multicenter Automatic Defibrillator 
Implantation Trial-I; MADIT-II = Multicenter Automatic Defibrillator Implantation Trial-II; MUSTT = Multicenter Unsustained Tachycardiac Trial; SCD-HeFT = 
Sudden Cardiac Death in Heart Failure Trial; SD = standard deviation 
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Appendix Table A30. Population parameter estimates from Bayesian hierarchical models, with or without interactions, by number of 
combined trials with categorized covariates. We utilized two priors: prior 1 has precision 1, while prior 2 has precision 5. Trials were 
combined in the following order (based on their publication date): MADIT-I, AVID, CABG-PATCH, MUSTT, CASH, MADIT-II, DEFINITE, SCD-
HeFT. 

Prior 1 Prior 2 
Main Effects Only Interactions Main Effects Only Interactions 

No. 95% 95% 95% 95% 
of Esti- Credible Esti- Credible Esti- Credible Esti- Credible 
trials Variable mate SD Interval mate SD Interval mate SD Interval mate SD Interval 
1 TRT -0.40 0.78 -1.79 1.26 -0.22 0.90 -1.95 1.56 -0.38 0.35 -1.05 0.32 -0.25 0.40 -1.02 0.54 

AGE 
[65,75) 0.25 0.74 -1.26 1.64 0.24 0.75 -1.30 1.63 0.18 0.35 -0.52 0.85 0.17 0.35 -0.50 0.86 
AGE ≥ 75 0.23 0.78 -1.30 1.81 0.26 0.77 -1.32 1.72 0.15 0.37 -0.60 0.89 0.15 0.37 -0.56 0.89 
EF > 30% -0.32 0.77 -1.80 1.26 -0.34 0.78 -1.85 1.28 -0.26 0.37 -0.99 0.47 -0.23 0.39 -1.03 0.50 
NYHA II 0.18 0.76 -1.32 1.64 0.14 0.74 -1.31 1.59 0.10 0.34 -0.56 0.78 0.04 0.36 -0.70 0.75 
NYHA III 0.60 0.80 -1.04 2.10 0.51 0.81 -1.16 2.00 0.44 0.37 -0.29 1.14 0.43 0.38 -0.30 1.12 
NYHA IV -0.03 1.04 -2.09 1.92 0.00 1.02 -2.05 1.99 -0.02 0.46 -0.91 0.95 -0.01 0.44 -0.89 0.79 
ISCH -0.59 0.89 -2.18 1.30 -0.67 0.94 -2.36 1.31 -0.46 0.42 -1.23 0.38 -0.43 0.42 -1.23 0.44 
TRT*AGE 
[65,75) - - - - 0.05 0.75 -1.46 1.49 - - - - 0.06 0.39 -0.67 0.83 
TRT*AGE ≥ 

75 - - - - -0.43 0.91 -2.20 1.28 - - - - -0.13 0.44 -0.98 0.77 
TRT*EF > 
30% - - - - -0.04 0.84 -1.65 1.53 - - - - -0.18 0.41 -0.98 0.62 
TRT*NYHA 
II - - - - 0.40 0.85 -1.26 1.93 - - - - 0.16 0.40 -0.59 0.97 
TRT*NYHA 
III - - - - 0.36 0.84 -1.23 1.94 - - - - 0.07 0.39 -0.72 0.84 
TRT*NYHA 
IV - - - - 0.02 1.02 -1.87 2.11 - - - - -0.03 0.44 -0.86 0.81 
TRT*ISCH - - - - -0.39 0.89 -2.09 1.39 - - - - -0.25 0.42 -1.09 0.56 

2 TRT -0.48 0.55 -1.56 0.69 -0.43 0.71 -1.81 1.05 -0.39 0.29 -0.93 0.19 -0.40 0.32 -0.99 0.24 
AGE 
[65,75) 0.27 0.61 -0.99 1.42 0.29 0.58 -0.86 1.43 0.23 0.28 -0.32 0.76 0.19 0.29 -0.41 0.72 
AGE ≥  75 0.42 0.60 -0.89 1.56 0.38 0.61 -0.92 1.60 0.33 0.29 -0.24 0.88 0.27 0.31 -0.33 0.85 
EF > 30% -0.41 0.60 -1.55 0.85 -0.38 0.62 -1.50 0.84 -0.41 0.29 -0.98 0.15 -0.38 0.30 -0.94 0.24 
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Appendix Table A30. Population parameter estimates from Bayesian hierarchical models, with or without interactions, by number of 
combined trials with categorized covariates. We utilized two priors: prior 1 has precision 1, while prior 2 has precision 5 – continued. 

Prior 1 Prior 2 
Main Effects Only Interactions Main Effects Only Interactions 

No. 95% 95% 95% 95% 
of Esti- Credible Esti- Credible Esti- Credible Esti- Credible 
trials Variable mate SD Interval mate SD Interval mate SD Interval mate SD Interval 

NYHA II 0.35 0.59 -0.86 1.56 0.27 0.60 -0.91 1.49 0.20 0.29 -0.43 0.74 0.19 0.31 -0.44 0.78 
NYHA III 0.78 0.64 -0.58 1.87 0.74 0.66 -0.71 1.97 0.60 0.31 -0.01 1.20 0.59 0.30 -0.02 1.17 
NYHA IV 0.00 1.00 -1.84 1.96 0.02 0.97 -1.88 1.82 0.00 0.42 -0.87 0.83 -0.03 0.46 -0.97 0.85 
ISCH 0.10 0.64 -1.18 1.34 -0.08 0.69 -1.44 1.28 -0.07 0.30 -0.63 0.49 -0.05 0.31 -0.66 0.58 
TRT*AGE 
[65,75) - - - - 0.00 0.60 -1.17 1.21 - - - - 0.06 0.32 -0.58 0.72 
TRT*AGE ≥ 

75 - - - - -0.06 0.73 -1.58 1.34 - - - - 0.16 0.35 -0.54 0.87 
TRT*EF > 
30% - - - - -0.02 0.63 -1.29 1.22 - - - - 0.02 0.34 -0.69 0.68 
TRT*NYHA 
II - - - - 0.14 0.65 -1.16 1.38 - - - - 0.05 0.31 -0.55 0.63 
TRT*NYHA 
III - - - - 0.09 0.63 -1.17 1.27 - - - - 0.07 0.32 -0.53 0.70 
TRT*NYHA 
IV - - - - 0.01 0.97 -1.86 1.92 - - - - 0.04 0.46 -0.91 0.92 
TRT*ISCH - - - - -0.12 0.70 -1.46 1.24 - - - - -0.15 0.32 -0.80 0.47 

3 TRT -0.31 0.45 -1.23 0.57 -0.48 0.60 -1.62 0.71 -0.28 0.25 -0.75 0.23 -0.41 0.30 -0.97 0.19 
AGE 
[65,75) 0.39 0.48 -0.57 1.24 0.30 0.46 -0.62 1.18 0.34 0.24 -0.14 0.77 0.28 0.25 -0.19 0.74 
AGE ≥ 75 0.53 0.49 -0.46 1.43 0.35 0.52 -0.70 1.45 0.42 0.27 -0.13 0.95 0.28 0.26 -0.21 0.79 
EF > 30% -0.39 0.45 -1.25 0.57 -0.33 0.47 -1.23 0.67 -0.34 0.25 -0.85 0.14 -0.33 0.26 -0.85 0.16 
NYHA II 0.39 0.47 -0.52 1.27 0.30 0.47 -0.70 1.23 0.29 0.23 -0.17 0.71 0.20 0.25 -0.32 0.67 
NYHA III 0.80 0.49 -0.30 1.71 0.81 0.51 -0.31 1.70 0.72 0.26 0.20 1.21 0.65 0.27 0.13 1.16 
NYHA IV 0.22 0.73 -1.32 1.65 0.16 0.73 -1.31 1.52 0.21 0.35 -0.51 0.88 0.16 0.36 -0.55 0.85 
ISCH -0.59 0.75 -1.96 1.11 -0.50 0.59 -1.60 0.72 -0.41 0.32 -1.03 0.23 -0.46 0.30 -1.03 0.19 
TRT*AGE 
[65,75) - - - - 0.11 0.52 -0.92 1.17 - - - - 0.10 0.27 -0.42 0.60 
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Appendix Table A30. Population parameter estimates from Bayesian hierarchical models, with or without interactions, by number of 
combined trials with categorized covariates. We utilized two priors: prior 1 has precision 1, while prior 2 has precision 5 – continued. 

Prior 1 Prior 2 
Main Effects Only Interactions Main Effects Only Interactions 

No. 95% 95% 95% 95% 
of Esti- Credible Esti- Credible Esti- Credible Esti- Credible 
trials Variable mate SD Interval mate SD Interval mate SD Interval mate SD Interval 

TRT*AGE ≥ 

75 - - - - 0.21 0.60 -1.07 1.32 - - - - 0.29 0.31 -0.32 0.87 
TRT*EF > 
30% - - - - -0.05 0.51 -1.10 0.93 - - - - -0.07 0.29 -0.61 0.50 
TRT*NYHA 
II - - - - 0.21 0.55 -0.94 1.28 - - - - 0.17 0.29 -0.40 0.73 
TRT*NYHA 
III - - - - 0.11 0.53 -0.87 1.12 - - - - 0.08 0.29 -0.49 0.63 
TRT*NYHA 
IV - - - - 0.06 0.77 -1.45 1.58 - - - - 0.08 0.37 -0.62 0.85 
TRT*ISCH - - - - -0.14 0.58 -1.28 0.96 - - - - -0.07 0.29 -0.65 0.50 

4 TRT -0.44 0.41 -1.27 0.47 -0.44 0.63 -1.71 0.75 -0.41 0.23 -0.84 0.03 -0.30 0.34 -0.97 0.35 
AGE 
[65,75) 0.34 0.38 -0.41 1.08 0.29 0.39 -0.47 1.08 0.28 0.21 -0.14 0.67 0.27 0.21 -0.17 0.68 
AGE ≥ 75 0.37 0.42 -0.49 1.15 0.24 0.40 -0.62 1.02 0.32 0.23 -0.13 0.76 0.22 0.24 -0.26 0.70 
EF > 30% -0.46 0.43 -1.27 0.44 -0.38 0.40 -1.13 0.49 -0.42 0.23 -0.87 0.04 -0.41 0.22 -0.83 0.05 
NYHA II 0.44 0.38 -0.37 1.24 0.40 0.38 -0.41 1.15 0.32 0.22 -0.11 0.73 0.29 0.21 -0.17 0.70 
NYHA III 0.92 0.40 0.09 1.68 0.95 0.41 0.10 1.68 0.76 0.23 0.27 1.19 0.74 0.23 0.26 1.15 
NYHA IV 0.21 0.76 -1.38 1.65 0.23 0.78 -1.33 1.71 0.18 0.35 -0.55 0.87 0.15 0.36 -0.59 0.85 
ISCH -0.25 0.51 -1.26 0.81 -0.37 0.52 -1.39 0.76 -0.53 0.30 -1.13 0.07 -0.48 0.29 -1.02 0.08 
TRT*AGE 
[65,75) - - - - 0.03 0.44 -0.79 0.88 - - - - 0.02 0.27 -0.51 0.58 
TRT*AGE ≥ 

75 - - - - 0.14 0.55 -1.10 1.12 - - - - 0.23 0.28 -0.34 0.77 
TRT*EF > 
30% - - - - -0.12 0.46 -1.04 0.74 - - - - -0.06 0.27 -0.55 0.45 
TRT*NYHA 
II - - - - -0.02 0.47 -1.01 0.94 - - - - 0.06 0.26 -0.48 0.54 
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Appendix Table A30. Population parameter estimates from Bayesian hierarchical models, with or without interactions, by number of 
combined trials with categorized covariates. We utilized two priors: prior 1 has precision 1, while prior 2 has precision 5 – continued. 

Prior 1 Prior 2 
Main Effects Only Interactions Main Effects Only Interactions 

No. 95% 95% 95% 95% 
of Esti- Credible Esti- Credible Esti- Credible Esti- Credible 
trials Variable mate SD Interval mate SD Interval mate SD Interval mate SD Interval 

TRT*NYHA 
III - - - - -0.09 0.45 -0.96 0.82 - - - - -0.03 0.26 -0.57 0.48 
TRT*NYHA 
IV - - - - 0.07 0.74 -1.41 1.55 - - - - 0.08 0.39 -0.64 0.88 
TRT*ISCH - - - - -0.04 0.60 -1.23 1.11 - - - - -0.20 0.33 -0.83 0.44 

5 TRT -0.40 0.35 -1.08 0.27 -0.78 0.44 -1.63 0.10 -0.38 0.20 -0.79 0.00 -0.62 0.25 -1.12 -0.10 
AGE 
[65,75) 0.42 0.33 -0.24 1.03 0.36 0.31 -0.25 0.98 0.34 0.19 -0.03 0.71 0.28 0.20 -0.10 0.67 
AGE ≥ 75 0.47 0.35 -0.25 1.16 0.36 0.37 -0.36 1.01 0.38 0.23 -0.08 0.83 0.30 0.22 -0.14 0.74 
EF > 30% -0.42 0.33 -1.05 0.23 -0.43 0.33 -1.09 0.19 -0.39 0.20 -0.77 0.02 -0.40 0.22 -0.81 0.01 
NYHA II 0.47 0.30 -0.10 1.12 0.44 0.33 -0.24 1.05 0.34 0.19 -0.07 0.69 0.33 0.21 -0.12 0.72 
NYHA III 1.04 0.36 0.28 1.65 1.02 0.36 0.28 1.65 0.85 0.21 0.40 1.22 0.82 0.24 0.33 1.24 
NYHA IV 0.21 0.72 -1.21 1.52 0.18 0.75 -1.31 1.65 0.18 0.34 -0.49 0.84 0.16 0.35 -0.55 0.82 
ISCH -0.35 0.44 -1.25 0.49 -0.48 0.44 -1.40 0.39 -0.47 0.25 -0.95 0.05 -0.48 0.24 -0.93 -0.02 
TRT*AGE 
[65,75) - - - - 0.13 0.38 -0.61 0.87 - - - - 0.17 0.22 -0.29 0.59 
TRT*AGE ≥ 

75 - - - - 0.13 0.48 -0.89 1.02 - - - - 0.23 0.28 -0.34 0.76 
TRT*EF > 
30% - - - - 0.01 0.40 -0.81 0.81 - - - - 0.01 0.25 -0.47 0.51 
TRT*NYHA 
II - - - - 0.06 0.40 -0.72 0.89 - - - - 0.03 0.25 -0.46 0.52 
TRT*NYHA 
III - - - - 0.12 0.42 -0.65 0.96 - - - - 0.11 0.26 -0.43 0.61 
TRT*NYHA 
IV - - - - 0.10 0.78 -1.50 1.58 - - - - 0.08 0.36 -0.62 0.81 
TRT*ISCH - - - - 0.22 0.43 -0.59 1.07 - - - - 0.09 0.25 -0.42 0.60 
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Appendix Table A30. Population parameter estimates from Bayesian hierarchical models, with or without interactions, by number of 
combined trials with categorized covariates. We utilized two priors: prior 1 has precision 1, while prior 2 has precision 5 – continued. 

Prior 1 Prior 2 
Main Effects Only Interactions Main Effects Only Interactions 

No. 95% 95% 95% 95% 
of Esti- Credible Esti- Credible Esti- Credible Esti- Credible 
trials Variable mate SD Interval mate SD Interval mate SD Interval mate SD Interval 
6 TRT -0.42 0.30 -0.96 0.21 -0.52 0.43 -1.41 0.31 -0.39 0.18 -0.74 -0.01 -0.65 0.29 -1.19 -0.06 

AGE 
[65,75) 0.44 0.28 -0.15 1.01 0.41 0.28 -0.17 0.95 0.38 0.17 0.03 0.72 0.35 0.19 -0.04 0.72 
AGE ≥ 75 0.57 0.32 -0.12 1.19 0.52 0.32 -0.12 1.11 0.49 0.19 0.08 0.86 0.42 0.20 0.02 0.80 
EF > 30% -0.36 0.31 -0.97 0.27 -0.39 0.31 -0.97 0.26 -0.37 0.19 -0.72 0.04 -0.40 0.21 -0.79 0.02 
NYHA II 0.40 0.27 -0.15 0.94 0.41 0.29 -0.18 0.96 0.30 0.18 -0.06 0.65 0.29 0.18 -0.07 0.63 
NYHA III 1.01 0.29 0.43 1.58 1.01 0.30 0.43 1.56 0.85 0.18 0.48 1.21 0.81 0.19 0.42 1.15 
NYHA IV 0.48 0.62 -0.92 1.63 0.25 0.62 -0.99 1.40 0.41 0.30 -0.19 0.98 0.27 0.29 -0.33 0.86 
ISCH -0.40 0.43 -1.27 0.45 -0.66 0.42 -1.48 0.22 -0.41 0.25 -0.92 0.11 -0.57 0.23 -1.02 -0.08 
TRT*AGE 
[65,75) - - - - 0.08 0.32 -0.54 0.72 - - - - 0.11 0.21 -0.29 0.53 
TRT*AGE ≥ 

75 - - - - 0.12 0.39 -0.67 0.95 - - - - 0.18 0.25 -0.34 0.65 
TRT*EF > 
30% - - - - 0.01 0.42 -0.79 0.79 - - - - 0.05 0.25 -0.43 0.54 
TRT*NYHA 
II - - - - 0.00 0.36 -0.72 0.73 - - - - 0.02 0.22 -0.44 0.44 
TRT*NYHA 
III - - - - 0.03 0.36 -0.70 0.76 - - - - 0.07 0.22 -0.34 0.49 
TRT*NYHA 
IV - - - - 0.39 0.65 -0.95 1.63 - - - - 0.31 0.35 -0.36 0.99 
TRT*ISCH - - - - -0.01 0.41 -0.76 0.89 - - - - 0.10 0.28 -0.47 0.62 

7 TRT -0.43 0.25 -0.92 0.11 -0.47 0.55 -1.45 0.63 -0.42 0.17 -0.76 -0.09 -0.57 0.25 -1.03 -0.08 
AGE 
[65,75) 0.45 0.26 -0.07 0.95 0.35 0.25 -0.12 0.85 0.41 0.17 0.08 0.72 0.34 0.17 -0.02 0.66 
AGE ≥ 75 0.65 0.28 0.09 1.18 0.59 0.30 0.00 1.20 0.57 0.19 0.18 0.93 0.50 0.20 0.13 0.90 
EF > 30% -0.37 0.29 -0.96 0.21 -0.37 0.31 -0.97 0.23 -0.36 0.19 -0.73 0.03 -0.36 0.19 -0.73 0.03 
NYHA II 0.33 0.26 -0.18 0.84 0.25 0.29 -0.37 0.80 0.24 0.16 -0.07 0.55 0.20 0.19 -0.16 0.55 
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Appendix Table A30. Population parameter estimates from Bayesian hierarchical models, with or without interactions, by number of 
combined trials with categorized covariates. We utilized two priors: prior 1 has precision 1, while prior 2 has precision 5 – continued. 

Prior 1 Prior 2 
Main Effects Only Interactions Main Effects Only Interactions 

No. 95% 95% 95% 95% 
of Esti Credible Esti Credible Esti Credible Esti Credible 
trials Variable mate SD Interval mate SD Interval mate SD Interval mate SD Interval 

NYHA III 0.96 0.26 0.44 1.45 0.96 0.28 0.38 1.48 0.82 0.18 0.46 1.17 0.83 0.19 0.47 1.20 
NYHA IV 0.47 0.63 -0.85 1.59 0.30 0.62 -0.99 1.42 0.42 0.30 -0.17 0.96 0.29 0.30 -0.32 0.89 
ISCH -0.47 0.42 -1.31 0.35 -0.57 0.43 -1.40 0.27 -0.35 0.26 -0.89 0.15 -0.38 0.21 -0.81 0.03 
TRT*AGE 
[65,75) - - - - 0.13 0.31 -0.50 0.75 - - - - 0.11 0.20 -0.28 0.50 
TRT*AGE ≥ 

75 - - - - 0.03 0.36 -0.71 0.71 - - - - 0.14 0.23 -0.31 0.58 
TRT*EF > 
30% - - - - -0.01 0.40 -0.79 0.78 - - - - 0.01 0.23 -0.44 0.46 
TRT*NYHA 
II - - - - 0.10 0.32 -0.50 0.76 - - - - 0.06 0.22 -0.37 0.47 
TRT*NYHA 
III - - - - -0.04 0.33 -0.67 0.62 - - - - 0.00 0.21 -0.41 0.42 
TRT*NYHA 
IV - - - - 0.34 0.66 -1.00 1.59 - - - - 0.30 0.32 -0.34 0.93 
TRT*ISCH - - - - -0.12 0.52 -1.21 0.84 - - - - 0.04 0.26 -0.47 0.54 

8 TRT -0.43 0.23 -0.90 0.03 -0.54 0.34 -1.24 0.09 -0.41 0.15 -0.71 -0.11 -0.67 0.24 -1.12 -0.19 
AGE 
[65,75) 0.45 0.22 -0.01 0.85 0.41 0.23 -0.03 0.85 0.39 0.15 0.08 0.68 0.36 0.16 0.05 0.67 
AGE ≥ 75 0.64 0.24 0.15 1.14 0.61 0.27 0.08 1.14 0.56 0.17 0.24 0.89 0.53 0.19 0.16 0.90 
EF > 30% -0.43 0.23 -0.89 0.03 -0.40 0.26 -0.92 0.14 -0.41 0.17 -0.73 -0.06 -0.43 0.18 -0.78 -0.07 
NYHA II 0.32 0.24 -0.18 0.81 0.30 0.27 -0.22 0.81 0.18 0.17 -0.16 0.48 0.20 0.16 -0.13 0.52 
NYHA III 0.97 0.25 0.45 1.44 0.96 0.26 0.42 1.45 0.78 0.17 0.44 1.10 0.79 0.17 0.44 1.12 
NYHA IV 0.47 0.62 -0.85 1.60 0.35 0.60 -0.91 1.46 0.42 0.32 -0.21 1.03 0.29 0.31 -0.29 0.90 
ISCH -0.03 0.35 -0.75 0.60 0.03 0.32 -0.63 0.65 -0.16 0.22 -0.62 0.27 -0.22 0.20 -0.61 0.15 
TRT*AGE 
[65,75) - - - - 0.12 0.27 -0.45 0.64 - - - - 0.12 0.19 -0.27 0.49 
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Appendix Table A30. Population parameter estimates from Bayesian hierarchical models, with or without interactions, by number of 
combined trials with categorized covariates. We utilized two priors: prior 1 has precision 1, while prior 2 has precision 5 – continued. 

Prior 1 Prior 2 
Main Effects Only Interactions Main Effects Only Interactions 

No. 95% 95% 95% 95% 
of Esti Credible Esti Credible Esti Credible Esti Credible 
trials Variable mate SD Interval mate SD Interval mate SD Interval mate SD Interval 

TRT*AGE ≥ 

75 - - - - -0.02 0.31 -0.65 0.57 - - - - 0.06 0.22 -0.36 0.48 
TRT*EF > 
30% - - - - 0.04 0.32 -0.65 0.60 - - - - 0.05 0.22 -0.40 0.48 
TRT*NYHA 
II - - - - 0.04 0.32 -0.61 0.73 - - - - 0.09 0.19 -0.29 0.48 
TRT*NYHA 
III - - - - 0.05 0.34 -0.66 0.70 - - - - 0.12 0.21 -0.26 0.55 
TRT*NYHA 
IV - - - - 0.37 0.65 -0.89 1.72 - - - - 0.28 0.33 -0.37 0.92 
TRT*ISCH - - - - -0.03 0.32 -0.65 0.58 - - - - 0.08 0.23 -0.37 0.51 

Abbreviations for Appendix Table A30:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery Bypass Graft-Patch trial; 
CASH = Cardiac Arrest Study Hamburg trial; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; EF = ejection fraction; ISCH = 
ischemic; MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter Automatic Defibrillator Implantation Trial-II; MUSTT = 
Multicenter Unsustained Tachycardiac Trial; NYHA = New York Heart Association; SCD-HeFT = Sudden Cardiac Death in Heart Failure Trial; SD = standard 
deviation; TRT = treatment 
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